Gọi phép tính là: \(A\)
Ta có:
\(A=\dfrac{2}{1\times2}+\dfrac{2}{2\times3}+\dfrac{2}{3\times4}+...+\dfrac{2}{9\times10}\\ A\div2=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{9\times10}\\ A\div2=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\\ A\div2=\dfrac{9}{10}\\ A=\dfrac{18}{10}=\dfrac{9}{5}\)
\(=2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\)
\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)=2\cdot\dfrac{9}{10}=\dfrac{9}{5}\)
Đặt phép tính là A
\(A=\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+\dfrac{2}{9.10}\)
\(2A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(2A=1-\dfrac{1}{10}\)
\(2A=\dfrac{9}{10}\)
\(A=\dfrac{9}{5}\)