a)\(\sqrt{9x^2}=2x+1\)
\(\Leftrightarrow\sqrt{\left(3x\right)^2}=2x+1\)
<=>3|x|=2x+1
dễ r`
b)\(\sqrt{x^2+6x+9}=3x-1\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)
\(\Leftrightarrow x+3=3x-1\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\)
a)\(\sqrt{9x^2}=2x+1\)
\(\Leftrightarrow\sqrt{\left(3x\right)^2}=2x+1\)
<=>3|x|=2x+1
dễ r`
b)\(\sqrt{x^2+6x+9}=3x-1\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)
\(\Leftrightarrow x+3=3x-1\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\)
Giải pt:
a/ \(\frac{7}{\sqrt{7x+4}+2}+\frac{7}{\sqrt{x+1}+1}+2x-8=0\)
b/ \(2x^3+9x^2-6x\left(1+2\sqrt{6x-1}\right)+2\sqrt{6x-1}+8=0\)
giải pt a. \(9x+7=6\sqrt{8x+1}+4\sqrt{x+3}\)
b. \(\sqrt{\left(3x-3\right)\left(x+3\right)+16}+\sqrt{5\left(x-2\right)\left(x+4\right)+54}=-x^2+2x+4\)
Bài 3 giải phương trình :
a ) \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
b ) \(\sqrt{x^2-4x+4}=2\)
c ) \(\sqrt{x^2-6x+9}=x-2\)
d ) \(\sqrt{x^2+4}=\sqrt{2x+3}\)
e ) \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
f ) \(x+\sqrt{2x+15}=0\)
Với x là nghiệm của pt: 2(x-1)=\(\sqrt{2\left(x^2+x+1\right)}\) . Hãy tính: T= \(\frac{-2x^3+13x^2-19x+1}{2x^4-9x^3-6x^2+17x-2}\)
Giải phương trình
a) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
b) \(\sqrt{x^2-4}-x^2+4=0\)
c) \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
d) \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
giải pt \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+24}=4-2x-x^2\)
1) giải pt \(-3x^2+x+3+\left(\sqrt{3x+2}-4\right)\sqrt{3x-2x^2}+\left(x+1\right)\sqrt{3x+2}=0\)
Giải pt
\(x^2-6x+26=6\sqrt{2x+1}\)
\(x+\sqrt{2x-1}=3+\sqrt{x+2}\)