cho a, b, c, d là các số dương có tổng bằng 4. Tìm giá trị nhỏ nhất của M=\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}\)
A=2a-a^2/ a+3 x( a-2/a+2 - a+2/a-2+ 4a^2/4-a^2)
a.Rút gọn A
b. tìm các giá trị của a để A bằng 1
c. khi nào A có giá trị dương? có giá trị âm
Cho a, b, c là các số thực có tổng bằng 0 và -1 ≤ a, b, c ≤ 1. Tìm giá trị lớn nhất của biểu thức P = a^2 + 2b^2 + c^2
1. Cho các số thực không âm \(a;b;c\) (không có hai số nào đồng thời bằng 0) thỏa mãn \(a+b+c \leq 3\)
Tìm giá trị nhỏ nhất: \(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)
2. Cho các số thực \(a;b;c \in [0;1]\) thỏa mãn \(a+b+c=2\), tìm giá trị lớn nhất và nhỏ nhất của:
\(B=\dfrac{ab}{1+ab}+\dfrac{bc}{1+bc}+\dfrac{ca}{1+ca}\)
Thank you all :)
Xác định các hệ số a b c để hàm số y=ax2+bx+c có giá trị nhỏ nhất bằng 3/4 khi x=1/2 và nhận giá trị bằng 1 khi x =1
Nếu Sina = \(\dfrac{\sqrt{3}-1}{4}\) thì 2.Cos a có giá trị bằng
A. \(\dfrac{\sqrt{12+\sqrt{3}}}{2}\) B. \(\dfrac{\sqrt{12+2\sqrt{3}}}{2}\) C.\(\dfrac{\sqrt{6-\sqrt{3}}}{4}\) D.\(\dfrac{\sqrt{6+2\sqrt{3}}}{4}\)
1. Cho bt P= (1/√x+2 + 1/√x-2 ) . √x-2/√x với x>0, x khác 4
a) rút gọn P
b) tìm x để P>1/3
c) tìm các giá trị thực của x để Q=9/2P có giá trị nguyên
2. Cho 2 biểu thức
A= 1-√x / 1+√ x và B= ( 15-√x/ x-25 + 2/√x+5) : √x+1/√ x-5 với x lớn hơn hoặc bằng 0, x khác 25
a) tính giá trị của A khi x= 6-2√5
b) rút gọn B
c) tìm a để pt A-B=a có nghiệm
Cho ba số hữu tỉ a, b, c thỏa mãn: \(a.b.c=1\) và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Chứng minh rằng biểu thức \(A=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\) có giá trị bằng bình phương của một số hữu tỉ.
tìm giá trị của x để biểu thức có nghĩa
a,\(\sqrt{x^2-x+1}\)
b,\(\sqrt{x^2-5}\)
c,\(\sqrt{-x^2+2x-1}\)
d,\(\sqrt{\dfrac{-2}{x-1}}\)