\(\left|\dfrac{1}{2}x-\dfrac{1}{5}\right|=\left|\dfrac{4}{3}-\dfrac{1}{3}x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{5}=\dfrac{4}{3}-\dfrac{1}{3}x\\\dfrac{1}{2}x-\dfrac{1}{5}=\dfrac{1}{3}x-\dfrac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{6}x=\dfrac{23}{15}\\\dfrac{1}{6}x=-\dfrac{17}{15}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{46}{25}\\x=-\dfrac{34}{5}\end{matrix}\right.\)
` |1/2x-1/5|=|4/3-1/3x|`
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{5}=\dfrac{4}{3}-\dfrac{1}{3}x\\\dfrac{1}{2}x-\dfrac{1}{5}=\dfrac{1}{3}x-\dfrac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(\dfrac{1}{2}+\dfrac{1}{3}\right).x=\left(\dfrac{4}{3}+\dfrac{1}{5}\right)\\\left(\dfrac{1}{2}-\dfrac{1}{3}\right).x=\left(\dfrac{1}{5}-\dfrac{4}{3}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{5}{6}.x=\dfrac{23}{15}\\\dfrac{1}{6}.x=-\dfrac{17}{15}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{23}{15}:\dfrac{5}{6}\\x=-\dfrac{17}{15}:\dfrac{1}{6}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{23}{15}\times\dfrac{6}{5}\\x=-\dfrac{17}{15}\times6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{46}{25}\\x=-\dfrac{34}{5}\end{matrix}\right.\)
Vậy......
`#BaoL i n h`
` |1/2x-1/5|=|4/3-1/3x|`
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{5}=\dfrac{4}{3}-\dfrac{1}{3}x\\\dfrac{1}{2}x-\dfrac{1}{5}=\dfrac{1}{3}x-\dfrac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(\dfrac{1}{2}+\dfrac{1}{3}\right).x=\left(\dfrac{4}{3}+\dfrac{1}{5}\right)\\\left(\dfrac{1}{2}-\dfrac{1}{3}\right).x=\left(\dfrac{1}{5}-\dfrac{4}{3}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{5}{6}.x=\dfrac{23}{15}\\\dfrac{1}{6}.x=-\dfrac{17}{15}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{23}{15}:\dfrac{5}{6}\\x=-\dfrac{17}{15}:\dfrac{1}{6}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{46}{25}\\x=-\dfrac{34}{5}\end{matrix}\right.\)
`#LeMichael`