1)
a \(x^3+y^3+x^2z+y^2z-xyz\)
=(x+y)(x2-xy+y2)+z(x2-xy+y2)
=(x+y+z)(x^2-xy+y^2)
b)yz(y+z)+xz(z-x)-xy(x+y)
=yz2+y2z+xz2-x2z-x2y-xy2
=z2(x+y)-z(x2-y2)-xy(x+y)
=(z2-xy)(x+y)-z(x-y)(x+y)
=(z2-xy-zx+zy)(x+y)
=[z(z-x)+y(z-x)](x+y)
=(z+y)(z-x)(x+y)
==1)
a) x3+y3+x2z+y2z-xyz
= ( x+y)(x2-xy+y2)+z(x2+y2-xy)
=(x2+y2-xy)(x+y+z)
b) yz(y+z)+xz(z-x)-xy(x+y)
=y2z+yz2+xz(z-x)-x2y-xy2
=(y2z-xy2)+(yz2-xy2)+xz(z-x)
=y2(z-x)+y(z2-x2)+xz(z-x)
=(z-x)(y2+xz)+y(z+x)(z-x)
=(z-x)(y2+xz+yz+xy)
=(z-x)(y(y+z)+x(z+y))
=(z-x)(y+z)(x+y)
Bafi1:
Bn trên làm r
Bai2:
\(a+b+c=0\)
=>\(a^2+b^2+c^2+2ab+2bc+2ca=0\)
=>\(2\left(ab+bc+ca\right)=-14\)
=>\(ab+bc+ca=-7\)
=>\(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=49\)
=>\(a^2b^2+b^2c^2+c^2a^2=49\)
=>\(2a^2b^2+2b^2c^2+2c^2a^2=98\)
Ta lại có:
\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=196\)
=>\(a^4+b^4+c^4=196-98=98\)
Vậy.......
Akai Haruma, Phạm Hoàng Giang, An Trịnh Hữu, An Trần, Hung nguyen, Bùi Thị Vân, Phạm Tú Uyên, Nguyễn Thị Hồng Nhung, Toshiro Kiyoshi, @Trần Hoàng Nghĩa, Đặng Anh Thư, ...
Giúp mk vs, các pạn ơi!!! Nguyễn Thị Hồng Nhung, Toshiro Kiyoshi, Hung nguyen, Bùi Thị Vân, ...