Xét tam giác ABC vuông tại B
\(AC^2=AB^2+BC^2\left(pytago\right)\)
\(\Rightarrow BC=\sqrt{AC^2-AB^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)
Áp dụng tslg:
\(\left\{{}\begin{matrix}sinA=\dfrac{BC}{AC}=\dfrac{12}{15}=\dfrac{4}{5}\\cosA=\dfrac{AB}{AC}=\dfrac{9}{15}=\dfrac{3}{5}\\tanA=\dfrac{BC}{AB}=\dfrac{12}{9}=\dfrac{4}{3}\\cotA=\dfrac{AB}{BC}=\dfrac{9}{12}=\dfrac{3}{4}\end{matrix}\right.\)
Theo định lí Pytago tam giác ABC vuông tại B
\(BC=\sqrt{AC^2-AB^2}=12\)cm
sinA = \(\dfrac{BC}{AC}=\dfrac{12}{15}=\dfrac{4}{5}\)
cosA = \(\dfrac{AB}{AC}=\dfrac{9}{15}=\dfrac{3}{5}\)
tanA = \(\dfrac{BC}{AB}=\dfrac{12}{9}=\dfrac{4}{3}\)
cotA = \(\dfrac{3}{4}\)
ΔABC vuông tại B, ta có: \(BC=\sqrt{AC^2-AB^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)
Khi đó:
\(sinA=\dfrac{BC}{AC}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(cosA=\dfrac{AB}{AC}=\dfrac{9}{15}=\dfrac{3}{5}\)
\(tanA=\dfrac{BC}{AB}=\dfrac{12}{9}=\dfrac{4}{3}\)
\(cotA=\dfrac{AB}{bC}=\dfrac{9}{12}=\dfrac{3}{4}\)