1) \(3x\left(x-\dfrac{1}{2}\right)-3x\left(x-\dfrac{1}{3}\right)-\left(x-\dfrac{1}{2}\right)=0\)
\(\Rightarrow3x^2-\dfrac{3}{2}x-3x^2+x-x+\dfrac{1}{2}=0\)
\(\Rightarrow\dfrac{3}{2}x=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{3}\)
2) \(\dfrac{-2x+1}{3}+\dfrac{1}{2}=-\dfrac{1}{3}\)
\(\Rightarrow\dfrac{-4x+2}{6}=-\dfrac{5}{6}\)
\(\Rightarrow-4x+2=-5\)
\(\Rightarrow-4x=-7\Rightarrow x=\dfrac{7}{4}\)
1. 3x\(\left(x-\dfrac{1}{2}\right)\) - 3x\(\left(x-\dfrac{1}{3}\right)\) - \(\left(x-\dfrac{1}{2}\right)\) = 0
<=> 3x2 - \(\dfrac{3x}{2}\) - 3x2 + x - x + \(\dfrac{1}{2}\) = 0
<=> \(\dfrac{6x^2}{2}-\dfrac{3x}{2}-\dfrac{6x^2}{2}+\dfrac{2x}{2}-\dfrac{2x}{2}+\dfrac{1}{2}=0\)
<=> 6x2 - 3x - 6x2 + 2x - 2x + 1 = 0
<=> -3x + 1 = 0
<=> -3x = -1
<=> x = \(\dfrac{1}{3}\)
2. \(\dfrac{-2x+1}{3}+\dfrac{1}{2}=\dfrac{-1}{3}\)
<=> \(\dfrac{2\left(-2x+1\right)}{6}+\dfrac{3}{6}=\dfrac{-2}{6}\)
<=> 2(-2x + 1) + 3 = -2
<=> -4x + 2 + 3 = -2
<=> 2 + 3 + 2 = 4x
<=> 7 = 4x
<=> x = \(\dfrac{7}{4}\)
1: Ta có: \(3x\left(x-\dfrac{1}{2}\right)-3x\left(x-\dfrac{1}{3}\right)-\left(x-\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow3x^2-\dfrac{3}{2}x-3x^2+x-x+\dfrac{1}{2}=0\)
\(\Leftrightarrow x\cdot\dfrac{-3}{2}=-\dfrac{1}{2}\)
hay \(x=\dfrac{1}{2}:\dfrac{3}{2}=\dfrac{1}{3}\)
2: Ta có: \(\dfrac{-2x+1}{3}+\dfrac{1}{2}=-\dfrac{1}{3}\)
\(\Leftrightarrow-4x+2+3=-2\)
\(\Leftrightarrow-4x=-7\)
hay \(x=\dfrac{7}{4}\)