Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen thi tra my

a: Xét tứ giác AHKC có

I là trung điểm chung của AK và HC

=>AHKC là hình bình hành

=>HK//AC

b: Ta có: HM\(\perp\)AB

AC\(\perp\)AB

Do đó: HM//AC

mà HK//AC

và HM,HK có điểm chung là H

nên H,M,K thẳng hàng

Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

nên AMHN là hình chữ nhật

=>\(\widehat{NMH}=\widehat{NAH}=\widehat{CAH}\)

mà \(\widehat{CAH}=\widehat{CKH}\)(CAHK là hình bình hành)

nên \(\widehat{CKM}=\widehat{NMK}\)

Xét tứ giác CNMK có

CN//MK

\(\widehat{CKM}=\widehat{NMK}\)

Do đó: CNMK là hình thang cân

c: Ta có: AMHN là hình chữ nhật

=>AH cắt MN tại trung điểm của mỗi đường

=>O là trung điểm chung của AH và MN

Xét ΔCAH có

CO,AI là các đường trung tuyến

CO cắt AI tại D

Do đó: D là trọng tâm của ΔCAH

=>\(AD=\dfrac{2}{3}AI=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AK=\dfrac{1}{3}AK\)

=>AK=3AD


Các câu hỏi tương tự
hello
Xem chi tiết
Nguyễn Thanh Huyền
Xem chi tiết
Trang Lương
Xem chi tiết
Tho Vo
Xem chi tiết
huy dương
Xem chi tiết
Trần Ngọc Liên
Xem chi tiết
duong hong anh
Xem chi tiết
Thùy Linh
Xem chi tiết
nguyễn Ngọc Thùy Dương
Xem chi tiết
Uzumaki Naruto
Xem chi tiết