a: Xét ΔABD vuông tại D và ΔACF vuông tại F có
\(\widehat{BAD}\) chung
Do đó: ΔABD~ΔACF
b: ΔABD~ΔACF
=>\(\dfrac{AD}{AF}=\dfrac{AB}{AC}\)
=>\(\dfrac{AD}{AB}=\dfrac{AF}{AC}\)
Xét ΔADF và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AF}{AC}\)
\(\widehat{DAF}\) chung
Do đó: ΔADF~ΔABC
c: Xét ΔBEH vuông tại E và ΔBDC vuông tại D có
\(\widehat{EBH}\) chung
Do đó: ΔBEH~ΔBDC
=>\(\dfrac{BE}{BD}=\dfrac{BH}{BC}\)
=>\(BH\cdot BD=BE\cdot BC\)
Xét ΔCEH vuông tại E và ΔCFB vuông tại F có
\(\widehat{ECH}\) chung
Do đó: ΔCEH~ΔCFB
=>\(\dfrac{CE}{CF}=\dfrac{CH}{CB}\)
=>\(CH\cdot CF=CE\cdot CB\)
\(BH\cdot BD+CH\cdot CF=BE\cdot BC+CE\cdot BC=BC\left(BE+CE\right)=BC^2\)