\(32^9=\left(2^5\right)^9=2^{45}=2^{13}\cdot2^{32};18^{13}=\left(2\cdot3^2\right)^{13}=2^{13}\cdot3^{26}\)
mà \(2^{32}< 3^{26}\)
nên \(32^9< 18^{13}\)
=>\(\left(-32\right)^9>\left(-18\right)^{13}\)
`32^9 = (2^5)^9 = 2^45 < 2^52 = 2^(4.13) = 16^13 < 18^13`
`=> (-32)^9 > (-18)^13`