\(x^2+1>=1\forall x\)
=>\(\dfrac{2}{x^2+1}< =\dfrac{2}{1}=2\forall x\)
=>\(-\dfrac{2}{x^2+1}>=-2\forall x\)
=>\(A=-\dfrac{2}{x^2+1}+3>=-2+3=1\forall x\)
Dấu '=' xảy ra khi x=0
Ta có:
\(x^2\ge0\forall x\)
\(\Rightarrow x^2+1\ge1\)
\(\Rightarrow\dfrac{2}{x^2+1}\le2\)
\(\Rightarrow-\dfrac{2}{x^2+1}\ge-2\)
\(\Rightarrow3-\dfrac{2}{x^2+1}\ge3-2=1\)
\(\Rightarrow A\ge1\)
Dấu "=" xảy ra khi \(x=0\)
Vậy \(A_{min}=1\) khi \(x=0\)