\(A=\dfrac{1}{a^3+b^3}+\dfrac{1}{2a^2b}+\dfrac{1}{2a^2b}+\dfrac{1}{2ab^2}+\dfrac{1}{2ab^2}\)
\(A\ge\dfrac{5^2}{a^3+b^3+2a^2b+2a^2b+2ab^2+2ab^2}\)
\(A\ge\dfrac{25}{\left(a+b\right)^3+ab\left(a+b\right)}\ge\dfrac{25}{\left(a+b\right)^3+\dfrac{\left(a+b\right)^2}{4}.\left(a+b\right)}=\dfrac{20}{\left(a+b\right)^3}\ge\dfrac{20}{1^3}=20\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)