Bài 1:
2AB=3BC=5AC
=>\(\dfrac{2AB}{30}=\dfrac{3BC}{30}=\dfrac{5AC}{30}\)
=>\(\dfrac{AB}{15}=\dfrac{BC}{10}=\dfrac{AC}{6}\)
=>\(\dfrac{AB}{A'B'}=\dfrac{BC}{B'C'}=\dfrac{AC}{A'C'}\)
Xét ΔABC và ΔA'B'C' có
\(\dfrac{AB}{A'B'}=\dfrac{BC}{B'C'}=\dfrac{AC}{A'C'}\)
Do đó: ΔABC~ΔA'B'C'
Bài 2:
ΔEFG~ΔE'F'G'
=>\(\widehat{G}=\widehat{G'};\dfrac{EG}{E'G'}=\dfrac{FG}{F'G'}\)
\(\dfrac{EG}{E'G'}=\dfrac{FG}{F'G'}\)
=>\(\dfrac{EG}{E'G'}=\dfrac{2MG}{2NG'}=\dfrac{MG}{NG'}\)
Xét ΔEGM và ΔE'G'N có
\(\dfrac{EG}{E'G'}=\dfrac{GM}{G'N}\)
\(\widehat{G}=\widehat{G'}\)
Do đó: ΔEGM~ΔE'G'N