2: \(a^3+b^3>=ab\left(a+b\right)\)
=>\(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)>=0\)
=>\(\left(a+b\right)\cdot\left(a^2-ab+b^2-ab\right)>=0\)
=>\(\left(a+b\right)\left(a-b\right)^2>=0\)
Vì a>0 và b>0 nên a+b>0
mà \(\left(a-b\right)^2>=0\forall a,b>0\)
nên \(\left(a+b\right)\left(a-b\right)^2>=0\forall a,b>0\)
=>\(a^3+b^3>=ab\left(a+b\right)\)(ĐPCM)