a: Xét ΔEBF và ΔDIF có
\(\widehat{EBF}=\widehat{DIF}\)(hai góc so le trong, EB//DI)
\(\widehat{EFB}=\widehat{DFI}\)(hai góc đối đỉnh)
Do đó: ΔEBF đồng dạng với ΔDIF
=>\(\dfrac{EB}{DI}=\dfrac{EF}{DF}\left(1\right)\)
Xét ΔFAE và ΔFCD có
\(\widehat{FAE}=\widehat{FCD}\)(hai góc so le trong, AE//CD)
\(\widehat{AFE}=\widehat{CFD}\)(hai góc đối đỉnh)
Do đó: ΔFAE đồng dạng với ΔFCD
=>\(\dfrac{AE}{CD}=\dfrac{FE}{FD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{CD}=\dfrac{EB}{DI}\)
mà AE=EB
nên CD=DI
=>D là trung điểm của CI
b: AB=CD
CD=DI
Do đó: AB=DI
Ta có: AB//CD
D\(\in\)IC
Do đó: AB//DI
Xét tứ giác ABDI có
AB//DI
AB=DI
Do đó: ABDI là hình bình hành