Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})(a+b+c)\geq (1+1+1)^2$
$\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}$
$\Rightarrow Q\geq a+b+c+\frac{9}{a+b+c}$
Áp dụng BĐT Cô-si:
$a+b+c+\frac{1}{9(a+b+c)}\geq 2\sqrt{\frac{1}{9}}=\frac{2}{3}$
$\frac{80}{9(a+b+c)}\geq \frac{80}{9.\frac{1}{3}}=\frac{80}{3}$ do $a+b+c\leq \frac{1}{3}$
$\Rightarrow Q\geq a+b+c+\frac{9}{a+b+c}\geq \frac{2}{3}+\frac{80}{3}=\frac{82}{3}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=\frac{1}{9}$