\(Q=\left(2n-1\right)\left(2n+3\right)-\left(4n-5\right)\left(n+1\right)+3\)
\(=4n^2-2n+6n-3-\left(4n^2-5n+4n-5\right)+3\)
\(=4n^2+4n-3-(4n^2-n-5)+3\)
\(=4n^2+4n-3-4n^2+n+5+3\)
\(=\left(4n^2-4n^2\right)+\left(4n+n\right)+\left(-3+5+3\right)\)
\(=5n+5\)
\(=5\left(n+1\right)\)
Vì \(5\left(n+1\right)⋮5\forall n\in Z\)
nên \(Q⋮5\forall n\in Z\)
Vậy ...
#\(Toru\)