\(a,đkx\ne4;x\ge0\\ b,A=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)-4-\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}\\ =\dfrac{x-\sqrt{x}+2\sqrt{x}-2-4-x+2\sqrt{x}}{x-4}\\ =\dfrac{3\sqrt{x}-6}{x-4}\\ =\dfrac{3\left(\sqrt{x}-2\right)}{x-4}\\ =\dfrac{3}{\sqrt{x}+2}\\ d,A< 1\\ \dfrac{3}{\sqrt{x}+2}< 1\\ \dfrac{3-\sqrt{x}-2}{\sqrt{x}+2}< 0\\ 1-\sqrt{x}< 0\\ \sqrt{x}>1\\ x>1;KHvsđk=>x>1;x\ne4\)