`a)`
`|5x-4| = |x+2|`
`<=> 5x - 4 = x+2` hoặc `5x - 4 = -( x+2)`
`<=> 4x = 6` hoặc `5x - 4 = -x - 2`
`<=> x = 3/2` hoặc `x = 1/3`
Vậy `S={3/2 ; 1/3}`
`a)`
Ta có dạng tổng quát `: |f(x)| = |g(x)|`
`-> f(x) = g(x)` hoặc `f(x) = -g(x)`
`b)`
`x + xy + y = 9`
`<=> x( y + 1 ) + ( y + 1 ) = 10`
`<=> ( x + 1 )( y + 1 ) = 10`
Do `x;y in ZZ`
`-> x + 1 ; y + 1 in Ư_{(10)} = { +-1 ; +-2 ; +-5 ; +-10 }`
Th1 `:`
`{(x+1=1),(y+1=10):}`
`<=>` `{(x=0),(y=9):}`
Th2 `:`
`{(x+1=2),(y+1=5):}`
`<=>` `{(x=1),(y=4):}`
Th3 `:`
`{(x+1=5),(y+1=2):}`
`<=>` `{(x=4),(y=1):}`
Th4 `:`
`{(x+1=10),(y+1=11):}`
`<=>` `{(x=9),(y=0):}`
Th5 `;`
`{(x+1=-1),(y+1=-10):}`
`<=>` `{(x=-2),(y=-11):}`
Th6 `:`
`{(x+1=-2),(y+1=-5):}`
`<=>` `{(x=-3),(y=-6):}`
Th7 `;`
`{(x+1=-5),(y+1=-2):}`
`<=>` `{(x=-6),(y=-3):}`
Th8 `:`
`{(x+1=-10),(y+1=-1):}`
`<=>` `{(x=-11),(y=-2):}`
Vậy `....`