Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc sơn free fire
Trần Tuấn Hoàng
4 tháng 4 2022 lúc 21:29

-Bạn tách câu hỏi ra nhé!

Trần Tuấn Hoàng
4 tháng 4 2022 lúc 22:28

1.

a.\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=199+195+...+3\)

\(=\dfrac{\left(\dfrac{199-3}{4}+1\right).\left(199+3\right)}{2}=5050\)

b.\(B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^{64}-1\right)\left(2^{64}+1\right)+1^2=2^{128}-1^2+1^2=2^{128}\)

c.\(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2+2ab-2bc-2ca-2a^2-4ab-2b^2=2c^2\)

2.

a. \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2\)

\(\Leftrightarrow a^3+b^3=a^3+b^3\left(đúng\right)\)

b. \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\left(đpcm\right)\)

Trần Tuấn Hoàng
4 tháng 4 2022 lúc 22:41

Bài 2:

i. \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow a+b+c=0\) hay \(\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

*\(\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left(a-b\right)^2=0;\left(b-c\right)^2=0;\left(c-a\right)^2=0\Rightarrow a=b=c\)

ii. \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\dfrac{bc+ca+ab}{abc}=0\Rightarrow bc+ca+ab=0\)

\(A=\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}=\dfrac{b^3c^3+c^3a^3+a^3b^3}{a^2b^2c^2}=\dfrac{\left(bc+ca+ab\right)\left(b^2c^2+c^2a^2+a^2b^2-bc^2a-b^2ca-bca^2\right)}{a^2b^2c^2}=\dfrac{0.\left(b^2c^2+c^2a^2+a^2b^2-bc^2a-b^2ca-bca^2\right)}{a^2b^2c^2}=0\)

c. \(a^3+b^3+c^3=3abc\)

\(\Rightarrow a+b+c=0\) hay \(a=b=c\)

*\(a+b+c=0\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

\(B=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=-1\)*\(a=b=c\)

\(B=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)

Trần Tuấn Hoàng
4 tháng 4 2022 lúc 22:46

Bài 3:

a. \(A=4x^2+4x+11=4x^2+4x+1+10=\left(2x+1\right)^2+10\ge10\)

-Dấu bằng xảy ra \(\Leftrightarrow x=\dfrac{-1}{2}\).

b. \(B=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+6x-x-6\right)\left(x^2+3x+2x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x-6+12\right)=\left(x^2+5x-6\right)^2+12\left(x^2+5x-6\right)=\left(x^2+5x-6\right)^2+12\left(x^2+5x-6\right)+36-36=\left(x^2+5x-6+6\right)^2-36=\left(x^2+5x\right)^2-36\ge-36\)

-Dấu bằng xảy ra \(\Leftrightarrow x=0\) hoặc \(x=-5\)


Các câu hỏi tương tự
hello
Xem chi tiết
Nguyễn Thanh Huyền
Xem chi tiết
Trang Lương
Xem chi tiết
Tho Vo
Xem chi tiết
huy dương
Xem chi tiết
Trần Ngọc Liên
Xem chi tiết
duong hong anh
Xem chi tiết
Thùy Linh
Xem chi tiết
nguyễn Ngọc Thùy Dương
Xem chi tiết
Uzumaki Naruto
Xem chi tiết