a) △ABC có AD phân giác \(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}\)
\(\Rightarrow BD=\dfrac{BC.AB}{AB+AC}=\dfrac{a.c}{b+c};CD=\dfrac{BC.AC}{AB+AC}=\dfrac{a.b}{b+c}\)
b) △ABD có BI là phân giác \(\Rightarrow\dfrac{AB}{BD}=\dfrac{AI}{ID}\)
\(\Rightarrow\dfrac{c}{\dfrac{a.c}{b+c}}=\dfrac{1}{\dfrac{c}{b+c}}=\dfrac{b+c}{a}=\dfrac{AI}{ID}\)
c) AG cắt BC tại E mà G trọng tâm tam giác ABC \(\Rightarrow\dfrac{AG}{GE}=2\)
\(a=\dfrac{b+c}{2}\Rightarrow\dfrac{b+c}{a}=\dfrac{AI}{ID}=2\)
△ADE có: \(\dfrac{AG}{GE}=\dfrac{AI}{ID}=2\) nên IG//BC