\(11^{21}=\left(11^7\right)^3\)
\(3^{39}=\left(3^{13}\right)^3\)
mà \(11^7>3^{13}\)
nên \(11^{21}>3^{39}\)
\(11^{21};3^{39}\)
\(3^{39}< 3^{42};3^{42}=3^{6.7}=\left(3^6\right)^7=729^7\)
\(11^{21}=11^{3.7}=\left(11^3\right)^7=1331^7\)
Vì \(1331^7>729^7=3^{42}< 11^{21}\)
Vậy \(3^{39}< 1^{21}\)