\(e,\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\\ \Rightarrow x^2+4x+4+2x-8=x^2-6x+8\\ \Rightarrow x^2+6x-4=x^2-6x+8\\ \Rightarrow12x-12=0\\ \Rightarrow x=1\)
\(f,\left(x+1\right)\left(2x-3\right)-3\left(x-2\right)=2\left(x-1\right)^2\\ \Rightarrow2x^2-x-3-3x+6=2\left(x^2-2x+1\right)\\ \Rightarrow2x^2-4x+3=2x^2-4x+2\\ \Rightarrow0x=1\left(vô.lí\right)\)