\(A=-2\left(x-y\right)^2+4\left(x-y\right)-2-8y^2+8y+2015\\ A=-2\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]-8\left(y^2-y+\dfrac{1}{4}\right)+2017\\ A=-2\left(x-y-1\right)^2-8\left(y-\dfrac{1}{2}\right)^2+2017\le2017\\ A_{max}=2017\Leftrightarrow\left\{{}\begin{matrix}x=y+1=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)