\(a,=\left(2x^4-4x^3-2x+4-4\right):\left(x-2\right)\\ =\left[\left(x-2\right)\left(2x^3-2\right)-4\right]:\left(x-2\right)\\ =2x^3-2\left(dư.-4\right)\\ b,=\left(4x^3-4x^2+2x^2-2x-x+1\right):\left(x-1\right)\\ =\left(x-1\right)\left(4x^2+2x-1\right):\left(x-1\right)\\ =4x^2+2x-1\\ c,=\left(5x^6-5x^4+x^5-x^3-2x^4+2x^2-4x^2+4-4\right):\left(x^2-1\right)\\ =\left[\left(x^2-1\right)\left(5x^4+x^3-2x^2-4\right)-4\right]:\left(x^2-1\right)\\ =5x^4+x^3-2x^2-4\left(dư.-4\right)\\ d,=\left(2x^3+2x^2+3x^2+3x-4x-4+4\right):\left(x+1\right)\\ =\left[\left(x+1\right)\left(2x^2+3x-4\right)+4\right]:\left(x+1\right)\\ =2x^2+3x-4\left(dư.4\right)\)
\(e,=\left(4x^4+8x^2-2x^3-4x-8x^2-16+11x+11\right):\left(x^2+2\right)\\ =\left[\left(x^2+2\right)\left(4x^2-2x-8\right)+11x+11\right]:\left(x^2+2\right)\\ =4x^2-2x-8\left(dư.11x+11\right)\)