a) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x-4-3x\right)\left(x-4+3x\right)=0\)
\(\Rightarrow-8\left(x+2\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
c) \(\Rightarrow5\left(x+3\right)-2x\left(x+3\right)=0\Rightarrow\left(x+3\right)\left(5-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{5}{2}\end{matrix}\right.\)
a) x3-4x=0
⇔x(x2-4)=0
⇔x(x-2)(x+2)=o
⇔x=0
x-2=0⇔x=2
x+2=0⇔x=-2
Vậy x ϵ {0;2;-2}
b) (x-4)2-9x2=0
⇔ (x-4)2-(3x)2=0
⇔ (x-4-3x)(x-4+3x)=0
⇔(-2x-4)(4x+4)=0
⇔-2x-4=0⇔x=-2
4x+4=0⇔x=-1
Vậy x ϵ {-2;-1}
c) 5(x+3)-2x2-6x=0
⇔5(x+3)-2x(x+3)=0
⇔(x+3)(5-2x)=0
⇔x+3=0⇔x=-3
5-2x=0⇔x=5/2
Vậy x ϵ {-3;5/2}