\(a,P=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ P_{max}=7\Leftrightarrow x-2=0\Leftrightarrow x=2\\ b,B=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\\ B_{max}=\dfrac{1}{4}\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\\ c,R=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\\ R_{max}=-\dfrac{9}{2}\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

