Bài 7:
a) \(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)
b) \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
Bài 8:
a) \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{19.20}\\ A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}-\dfrac{1}{20}\\ A=1-\dfrac{1}{20}\\ A=\dfrac{19}{20}\)
b) \(B=\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{132}\\ B=\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{11.12}\\ B=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{11}-\dfrac{1}{12}\\ B=\dfrac{1}{4}-\dfrac{1}{12}\\ B=\dfrac{1}{6}\)
Bài 8:
a: Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{19\cdot20}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=1-\dfrac{1}{20}=\dfrac{19}{20}\)
b: Ta có: \(B=\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{132}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{11}-\dfrac{1}{12}\)
\(=\dfrac{1}{4}-\dfrac{1}{12}\)
\(=\dfrac{3}{12}-\dfrac{1}{12}=\dfrac{1}{6}\)
Bài 7:
a: \(\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{3}{6}-\dfrac{2}{6}=\dfrac{1}{6}=\dfrac{1}{2\cdot3}\)
b: \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)