Quoc Tran Anh Le

Like và follow để ủng hộ và giúp đỡ chúng mình phát triển cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Có câu hỏi hay? Gửi ngay chờ chi:

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C37 _ 26.1.2021]

undefined

----------------------------------------------------------

Đáp án chuyên mục dãy số quy luật sẽ được giới thiệu trong bài đăng tới nha :>

tthnew
Thiếu tá -
6 giờ trước (12:01)

Xét hiệu hai vế bất đẳng thức đã cho ta được:

\(VT-VP={\dfrac { \left( a-b \right) ^{2}{c}^{2}}{ \left( b+c \right) \left( c +a \right) \left( a+b+c \right) }}+{\dfrac { \left( b-c \right) ^{2}{a }^{2}}{ \left( a+b \right) \left( c+a \right) \left( a+b+c \right) } }+{\dfrac { \left( ac-{b}^{2} \right) ^{2}}{ \left( a+b \right) \left( b+c \right) \left( a+b+c \right) }}\geqslant 0. \)

Đẳng thức xảy ra khi $a=b=c.$

Bình luận (0)
tthnew
Thiếu tá -
6 giờ trước (12:05)

Cách khác. 

Quy đồng, ta cần chứng minh:

\(2\,{a}^{3}{c}^{2}+{a}^{2}{b}^{3}-3\,{a}^{2}{b}^{2}c-2\,{a}^{2}b{c}^{2} +2\,{a}^{2}{c}^{3}+a{b}^{4}-3\,a{b}^{2}{c}^{2}+{b}^{4}c+{b}^{3}{c}^{2}\geq 0\)

Sử dụng bất đẳng thức AM-GM, ta có:

\(3\,a{b}^{2}{c}^{2}\leq \dfrac{5}{4}{a}^{2}{c}^{3}+\dfrac{1}{2}\,a{b}^{4}+\dfrac{1}{4} \,{b}^{4}c+{b}^{3}{c}^{2},\\2\,{a}^{2}b{c}^{2}\leq {\dfrac {7\,{a}^{3}{c} ^{2}}{10}}+\dfrac{1}{5}{a}^{2}{b}^{3}+\dfrac{3}{4}{a}^{2}{c}^{3}+{\dfrac {7\,{b}^{4}c }{20}},\\3\,{a}^{2}{b}^{2}c\leq {\dfrac {13\,{a}^{3}{c}^{2}}{10}}+\dfrac{4}{5}{a }^{2}{b}^{3}+\dfrac{1}{2}a{b}^{4}+\dfrac{2}{5}{b}^{4}c \)

Xong :D

 

Bình luận (0)
Nguyễn Lê Phước Thịnh
Thiếu tướng -
19 giờ trước (22:18)

Gọi chiều dài của khu vườn là x(m) và chiều rộng của khu vườn là y(m)

Vì tổng nửa chu vi và chiều dài là 66m nên ta có phương trình: 

x+y+x=66

hay 2x+y=66(1)

Vì nửa tổng chu vi và 2 lần chiều rộng là 48 m nên ta có phương trình:

\(\dfrac{2y+2x+2y}{2}=48\)

\(\Leftrightarrow4y+2x=96\)(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}2x+y=66\\4y+2x=96\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3y=-30\\2x+y=66\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=10\\2x=66-10=56\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=28\\y=10\end{matrix}\right.\)

Diện tích khu vườn là:

\(S=28\cdot10=280\left(m^2\right)\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN