CM các phân số sau tối giản với mọi n thuộc số tự nhiên"
a) \(\frac{12n+1}{2\left(10n+1\right)}\)
b)\(\frac{2n+3}{2n^2+4n+1}\)
\(\left(x^2+2y^2\right)\left(1+2\right)\ge\left(x+2y\right)^2=1\)(bunyakovsky)
\(\Rightarrow x^2+2y^2\ge\dfrac{1}{3}\)
dấu = xảy ra: \(\dfrac{x}{1}=\dfrac{\sqrt{2}y}{\sqrt{2}}\Leftrightarrow x=y=\dfrac{1}{3}\)
Theo đề: x +2y =1
<=> x = 1 - 2y
Ta có: A = x2 + 2y2
= (1-2y)2 +2y2
= 1-2y+4y2+2y2
= 1-2y + 6y2
= 6( y2 - \(\dfrac{1}{3}\)y+\(\dfrac{1}{36}\)) + \(\dfrac{5}{6}\)
= 6(y-\(\dfrac{1}{6}\))2 +\(\dfrac{5}{6}\)
mà 6 (y-\(\dfrac{1}{6}\))2 \(\ge\)0 với mọi y
=> 6(y-\(\dfrac{1}{6}\))2 +\(\dfrac{5}{6}\)\(\ge\)\(\dfrac{5}{6}\) với mọi y
=> A\(\ge\)\(\dfrac{5}{6}\)
dấu "=" xảy ra khi A nhận GTNN
<=> y = \(\dfrac{1}{6}\), x = \(\dfrac{2}{3}\)
vậy GTNN của A là \(\dfrac{5}{6}\) khi y=\(\dfrac{1}{6}\), x=\(\dfrac{2}{3}\)
Ta có: \(\left(x+3\right)\left(x-11\right)+2003\)
\(=x^2-8x+-33+2003\)
\(=x^2-8x+16+1954\)
\(=\left(x-4\right)^2+1954\)
Do \(\left(x-4\right)^2\ge0\) với mọi x
=> \(\left(x-4\right)^2+1954>0\) với mọi x
<=> \(\left(x+3\right)\left(x-11\right)+2003>0\) với mọi x
=> (x+3)(x-11)+2003 luôn dương với mọi giá trị của x
(x + 3)(x - 11)+ 2003
= x2 + 3x - 11x - 33 + 2003
= x2 - 8x - 33 + 2003
= x2 - 4.2x + 16 - 49 + 2003
= (x - 4)2 + 1954, luôn dương (đpcm)
Phương trình này nghiệm xấu lắm. Mà nhắm lớp 8 giải không nổi đâu
sửa đề: \(a^3+b^3+c^3=3abc\)
Giải:
\(a^3+b^3+c^3=3abc\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\\ \Leftrightarrow\left(a+b+c\right)^3-3c\left(a+b\right)\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-3c\left(a+b\right)-3ab\right]=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(a-c\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)(đpcm)
\(a^2+b^2+c^2=ab+ac+bc\)
=> \(2a^2+2b^2+2c^2=2ab+2ac+2bc\)
=> \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
=> \(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0\) với mọi a, b ; \(\left(a-c\right)^2\ge0\) với mọi a, c ; \(\left(b-c\right)^2\ge0\) với mọi b, c.
Do đó \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\) khi \(a-b=a-c=b-c=0\), suy ra a = b = c
\(a^2+b^2+c^2=ab+ac+bc\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)
\(\Rightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\left(a-c\right)^2\ge0\forall a,c\)
\(\left(b-c\right)^2\ge0\forall b,c\)
Do đó \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)
Dấu "=" xảy ra \(\Leftrightarrow a=b,a=c,b=c\)
\(\Rightarrow a=b=c\)
1)\(8-12x+6x^2-x^3\)
\(=-\left(x^3-6x^2+12x-8\right)\)
\(=-\left(x-2\right)^3\)
2)\(15x^3-75x^2+15x-1\)
\(=\left(5x-1\right)^3\)
4)
sao câu này cũng sai đề thế mắt m` lé à
\(\left\{{}\begin{matrix}x^2+2x+1=y^2+11\\\left(x+1\right)^2-y^2=11\\\Rightarrow\left(x+1\right)^2=36\Rightarrow\left[{}\begin{matrix}x=5\\x=-7\end{matrix}\right.\end{matrix}\right.\) \(\)
Vậy: \(\left(x,y\right)=\left(5,5\right);\left(5,-5\right);\left(-7,5\right);,\left(-7,-5\right)\)