Bài 6: Biến đối đơn giản biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vinh Nguyễn12345678910
Xem chi tiết
Phương An
3 tháng 8 2017 lúc 16:44

\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)

\(=\sqrt{\left(x-2\right)+2\sqrt{2\left(x-2\right)}+2}+\sqrt{\left(x-2\right)-2\sqrt{2\left(x-2\right)}+2}\)

\(=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)

\(=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)

Thỏ Thỏ
Xem chi tiết
thuongnguyen
4 tháng 8 2017 lúc 9:05

b) \(B=\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-\dfrac{x\sqrt{x}}{\sqrt{x}}=\dfrac{\sqrt{x}\left(x-\sqrt{x}\right)-x\sqrt{x}\left(1-\sqrt{x}\right)}{\sqrt{x}\left(1-\sqrt{x}\right)}\) = \(\dfrac{x\sqrt{x}-x-x\sqrt{x}+x^2}{\sqrt{x}-x}=\dfrac{x^2-x}{\sqrt{x}-x}\)

c) \(C=\dfrac{x+2\sqrt{x}}{\sqrt{x}-x}-\dfrac{x\sqrt{x}}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)-x\sqrt{x}\left(\sqrt{x}-x\right)}{\left(\sqrt{x}-x\right)\left(\sqrt{x}+1\right)}=x+2\sqrt{x}-x\sqrt{x}\)

\(d,D=\dfrac{x+2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}=\dfrac{x+2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\) \(\dfrac{\left(x+2\sqrt{x}\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{x+7\sqrt{x}-2}{\sqrt{x}+2}\)

e) \(E=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}-24}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{2\sqrt{x}-24}{\sqrt{x}+3}\)

F) F = \(\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}=\dfrac{3\left(\sqrt{x}-5\right)+20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{23-2\sqrt{x}}{\sqrt{x}+5}\)

Bertram Đức Anh
Xem chi tiết
TFBoys
4 tháng 8 2017 lúc 20:44

ĐK: \(x\ge1\)

Bình phương 2 vế ta được

\(x-1+7x+1+2\sqrt{\left(x-1\right)\left(7x+1\right)}=14x-6\)

\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(7x+1\right)}=6x-6\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(7x+1\right)}=3x-3\)

\(\Leftrightarrow\left(x-1\right)\left(7x+1\right)=\left(3x-3\right)^2\) (vì \(x\ge1\))

\(\Leftrightarrow x^2-6x+5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

Thử lại thấy thỏa mãn.

Bertram Đức Anh
Xem chi tiết
Lightning Farron
4 tháng 8 2017 lúc 23:20

\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)

\(pt\Leftrightarrow\left(\sqrt{3x^2-7x+3}-1\right)-\left(\sqrt{x^2-2}-\sqrt{2}\right)=\left(\sqrt{3x^2-5x-1}-1\right)-\left(\sqrt{x^2-3x+4}-\sqrt{2}\right)\)

\(\Leftrightarrow\dfrac{3x^2-7x+3-1}{\sqrt{3x^2-7x+3}+1}-\dfrac{x^2-2-2}{\sqrt{x^2-2}+\sqrt{2}}=\dfrac{3x^2-5x-1-1}{\sqrt{3x^2-5x-1}+1}-\dfrac{x^2-3x+4-2}{\sqrt{x^2-3x+4}+\sqrt{2}}\)

\(\Leftrightarrow\dfrac{3x^2-7x+2}{\sqrt{3x^2-7x+3}+1}-\dfrac{x^2-4}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{3x^2-5x-2}{\sqrt{3x^2-5x-1}+1}+\dfrac{x^2-3x+2}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)

\(\Leftrightarrow\dfrac{\left(x-2\right)\left(3x-1\right)}{\sqrt{3x^2-7x+3}+1}-\dfrac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x-1}+1}+\dfrac{\left(x-1\right)\left(x-2\right)}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\dfrac{3x-1}{\sqrt{3x^2-7x+3}+1}-\dfrac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{3x+1}{\sqrt{3x^2-5x-1}+1}+\dfrac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}\right)=0\)

Dễ thấy: \(\dfrac{3x-1}{\sqrt{3x^2-7x+3}+1}-\dfrac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{3x+1}{\sqrt{3x^2-5x-1}+1}+\dfrac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}< 0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

Bertram Đức Anh
Xem chi tiết
Lightning Farron
4 tháng 8 2017 lúc 22:40

\(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)

\(\Leftrightarrow\sqrt{4x^2+5x+1}-\dfrac{2\sqrt{7}}{3}-\left(2\sqrt{x^2-x+1}-\dfrac{2\sqrt{7}}{3}\right)=9x-3\)

\(\Leftrightarrow\dfrac{4x^2+5x+1-\dfrac{28}{9}}{\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}}-\dfrac{4\left(x^2-x+1\right)-\dfrac{28}{9}}{2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}}=9x-3\)

\(\Leftrightarrow\dfrac{\dfrac{36x^2+45x-19}{9}}{\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}}-\dfrac{\dfrac{36x^2-36x+8}{9}}{2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}}=3\left(3x-1\right)\)

\(\Leftrightarrow\dfrac{\dfrac{\left(3x-1\right)\left(12x+19\right)}{9}}{\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}}-\dfrac{\dfrac{4\left(3x-2\right)\left(3x-1\right)}{9}}{2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}}-3\left(3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(\dfrac{12x+19}{9\left(\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}\right)}-\dfrac{4\left(3x-2\right)}{9\left(2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}\right)}-3\right)=0\)

Dễ thấy: \(\dfrac{12x+19}{9\left(\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}\right)}-\dfrac{4\left(3x-2\right)}{9\left(2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}\right)}-3< 0\)

\(\Rightarrow3x-1=0\Rightarrow3x=1\Rightarrow x=\dfrac{1}{3}\)

ngonhuminh
6 tháng 8 2017 lúc 10:51

Ace Legona cái dễ thấy của bạn mình nghĩ lại là mấu chốt của bài này

Phương Mai
Xem chi tiết
Nguyễn Võ Văn Hùng
Xem chi tiết
KZ
8 tháng 8 2017 lúc 21:07

a) đths y=ax+2 đi qua M(1;3)

=> 3=a+2 <=> a=1

b) Biến đối đơn giản biểu thức chứa căn bậc hai

c) Gọi A,B lần lượt là giao điểm của đường thẳng y=x+2 với Ox và Oy

Dễ thấy : \(\Delta AOB\) cân tại O => BAO^ = 45o

KL: a=1

BAO^ = 45o

Mark Tuan
Xem chi tiết
Đánh Giày Nhung
7 tháng 8 2017 lúc 10:37

\(\sqrt{6-2\sqrt{5}}\)\(-\sqrt{29-12\sqrt{5}}\) =Hỏi đáp Toán

= \(\sqrt{5}-1-\left(2\sqrt{5}-3\right)\)= 2-\(\sqrt{5}\)

Mai Thanh Tâm
Xem chi tiết
Lightning Farron
7 tháng 8 2017 lúc 20:42

Áp dụng BĐT AM-GM ta có:

\(\left\{{}\begin{matrix}1+x\ge2\sqrt{x}\\x+y\ge2\sqrt{xy}\\1+y\ge2\sqrt{y}\end{matrix}\right.\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(1+x+y\right)\ge2\left(\sqrt{x}+\sqrt{y}+\sqrt{xy}\right)\)

\(\Leftrightarrow VT=1+x+y\ge\sqrt{x}+\sqrt{y}+\sqrt{xy}=VP\)

Xảy ra khi \(\left\{{}\begin{matrix}1+x=2\sqrt{x}\\x+y=2\sqrt{xy}\\1+y=2\sqrt{y}\end{matrix}\right.\)\(\Rightarrow x=y=1\)

Khi đó \(P=x^2+y^2=1^2+1^2=2\)

\(Q=x^{2009}+y^{2009}=1^{2009}+1^{2009}=2\)

TFBoys
7 tháng 8 2017 lúc 20:46

Với \(x,y>0\) ta có

\(1+x+y=\sqrt{x}+\sqrt{xy}+\sqrt{y}\)

\(\Leftrightarrow2+2x+2y-2\sqrt{x}-2\sqrt{xy}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)+\left(x-2\sqrt{xy}+y\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2=0\)

\(\forall x,y>0\) ta luôn có \(\left\{{}\begin{matrix}\left(\sqrt{x}-1\right)^2\ge0\\\left(\sqrt{y}-1\right)^2\ge0\\\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)

Đẳng thức xảy ra \(\Leftrightarrow x=y=1\)

Vậy x=y=1

Nên P=Q=2

Lê khắc Tuấn Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 5 2022 lúc 10:11

a: \(P=\dfrac{16\sqrt{a}-a-\left(2\sqrt{a}+3\right)\left(\sqrt{a}+2\right)+\left(3\sqrt{a}-2\right)\left(\sqrt{a}-2\right)}{a-4}\)

\(=\dfrac{16\sqrt{a}-a-2a-7\sqrt{a}-6+3a-8\sqrt{a}+4}{a-4}\)

\(=\dfrac{\sqrt{a}-2}{a-4}=\dfrac{1}{\sqrt{a}+2}\)

b: Thay \(a=4+2\sqrt{3}\) vào P, ta được:

\(P=\dfrac{1}{\sqrt{3}+1+2}=\dfrac{1}{3+\sqrt{3}}=\dfrac{3-\sqrt{3}}{6}\)