chứng minh:
x+2\(\sqrt{2x-4}\)= \(\left(\sqrt{2}+\sqrt{x-2}\right)^2\) với \(x\ge2\)
b) rút gọn \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) với x\(\ge2\)
chứng minh:
x+2\(\sqrt{2x-4}\)= \(\left(\sqrt{2}+\sqrt{x-2}\right)^2\) với \(x\ge2\)
b) rút gọn \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) với x\(\ge2\)
\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
\(=\sqrt{\left(x-2\right)+2\sqrt{2\left(x-2\right)}+2}+\sqrt{\left(x-2\right)-2\sqrt{2\left(x-2\right)}+2}\)
\(=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
\(=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)
Bài 1 : Rút gọn các bt sau :
b, B=\(\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\) - \(\dfrac{x\sqrt{x}}{\sqrt{x}}\)
c, C= \(\dfrac{x+2\sqrt{x}}{\sqrt{x}-x}\) - \(\dfrac{x\sqrt{x}}{\sqrt{x}+1}\)
d, D= \(\dfrac{x+2\sqrt{x}}{\sqrt{x}+2}\)+ \(\dfrac{5\sqrt{x}-2}{x-4}\) ( x> 0 ; x#4)
e, E= \(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)+ \(\dfrac{\sqrt{x}-24}{x-9}\) ( x>0; x#9)
f, F= \(\dfrac{3}{\sqrt{x}+5}\) + \(\dfrac{20-2\sqrt{x}}{x-25}\)( x>0; x#25)
Mấy bạn làm giúp mk vs ... thanks trc ạ
b) \(B=\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-\dfrac{x\sqrt{x}}{\sqrt{x}}=\dfrac{\sqrt{x}\left(x-\sqrt{x}\right)-x\sqrt{x}\left(1-\sqrt{x}\right)}{\sqrt{x}\left(1-\sqrt{x}\right)}\) = \(\dfrac{x\sqrt{x}-x-x\sqrt{x}+x^2}{\sqrt{x}-x}=\dfrac{x^2-x}{\sqrt{x}-x}\)
c) \(C=\dfrac{x+2\sqrt{x}}{\sqrt{x}-x}-\dfrac{x\sqrt{x}}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)-x\sqrt{x}\left(\sqrt{x}-x\right)}{\left(\sqrt{x}-x\right)\left(\sqrt{x}+1\right)}=x+2\sqrt{x}-x\sqrt{x}\)
\(d,D=\dfrac{x+2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}=\dfrac{x+2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\) \(\dfrac{\left(x+2\sqrt{x}\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{x+7\sqrt{x}-2}{\sqrt{x}+2}\)
e) \(E=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}-24}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{2\sqrt{x}-24}{\sqrt{x}+3}\)
F) F = \(\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}=\dfrac{3\left(\sqrt{x}-5\right)+20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{23-2\sqrt{x}}{\sqrt{x}+5}\)
Giải phương trình \(\sqrt{x-1}+\sqrt{7x+1}=\sqrt{14x-6}\)
ĐK: \(x\ge1\)
Bình phương 2 vế ta được
\(x-1+7x+1+2\sqrt{\left(x-1\right)\left(7x+1\right)}=14x-6\)
\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(7x+1\right)}=6x-6\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(7x+1\right)}=3x-3\)
\(\Leftrightarrow\left(x-1\right)\left(7x+1\right)=\left(3x-3\right)^2\) (vì \(x\ge1\))
\(\Leftrightarrow x^2-6x+5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
Thử lại thấy thỏa mãn.
Giải phương trình:\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)
\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)
\(pt\Leftrightarrow\left(\sqrt{3x^2-7x+3}-1\right)-\left(\sqrt{x^2-2}-\sqrt{2}\right)=\left(\sqrt{3x^2-5x-1}-1\right)-\left(\sqrt{x^2-3x+4}-\sqrt{2}\right)\)
\(\Leftrightarrow\dfrac{3x^2-7x+3-1}{\sqrt{3x^2-7x+3}+1}-\dfrac{x^2-2-2}{\sqrt{x^2-2}+\sqrt{2}}=\dfrac{3x^2-5x-1-1}{\sqrt{3x^2-5x-1}+1}-\dfrac{x^2-3x+4-2}{\sqrt{x^2-3x+4}+\sqrt{2}}\)
\(\Leftrightarrow\dfrac{3x^2-7x+2}{\sqrt{3x^2-7x+3}+1}-\dfrac{x^2-4}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{3x^2-5x-2}{\sqrt{3x^2-5x-1}+1}+\dfrac{x^2-3x+2}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\dfrac{\left(x-2\right)\left(3x-1\right)}{\sqrt{3x^2-7x+3}+1}-\dfrac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x-1}+1}+\dfrac{\left(x-1\right)\left(x-2\right)}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{3x-1}{\sqrt{3x^2-7x+3}+1}-\dfrac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{3x+1}{\sqrt{3x^2-5x-1}+1}+\dfrac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}\right)=0\)
Dễ thấy: \(\dfrac{3x-1}{\sqrt{3x^2-7x+3}+1}-\dfrac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\dfrac{3x+1}{\sqrt{3x^2-5x-1}+1}+\dfrac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}< 0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
Giải phương trình \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
\(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
\(\Leftrightarrow\sqrt{4x^2+5x+1}-\dfrac{2\sqrt{7}}{3}-\left(2\sqrt{x^2-x+1}-\dfrac{2\sqrt{7}}{3}\right)=9x-3\)
\(\Leftrightarrow\dfrac{4x^2+5x+1-\dfrac{28}{9}}{\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}}-\dfrac{4\left(x^2-x+1\right)-\dfrac{28}{9}}{2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}}=9x-3\)
\(\Leftrightarrow\dfrac{\dfrac{36x^2+45x-19}{9}}{\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}}-\dfrac{\dfrac{36x^2-36x+8}{9}}{2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}}=3\left(3x-1\right)\)
\(\Leftrightarrow\dfrac{\dfrac{\left(3x-1\right)\left(12x+19\right)}{9}}{\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}}-\dfrac{\dfrac{4\left(3x-2\right)\left(3x-1\right)}{9}}{2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}}-3\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(\dfrac{12x+19}{9\left(\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}\right)}-\dfrac{4\left(3x-2\right)}{9\left(2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}\right)}-3\right)=0\)
Dễ thấy: \(\dfrac{12x+19}{9\left(\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}\right)}-\dfrac{4\left(3x-2\right)}{9\left(2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}\right)}-3< 0\)
\(\Rightarrow3x-1=0\Rightarrow3x=1\Rightarrow x=\dfrac{1}{3}\)
Rút gọn biểu thức:
M=\((1-2\sqrt{\dfrac{a}{b}}+\dfrac{a}{b})\div(\sqrt{a}-\sqrt{b})^2\)
): Cho hàm số bậc nhất y=ax+2
a/ Xác định hệ số góc a, biết rằng đồ thị của hàm số đi qua điểm M (1 ; 3).
b/ Vẽ đồ thị của hàm số.
c/ Tính góc tạo bởi đồ thị của hàm số và trục Ox.
a) đths y=ax+2 đi qua M(1;3)
=> 3=a+2 <=> a=1
b)
c) Gọi A,B lần lượt là giao điểm của đường thẳng y=x+2 với Ox và Oy
Dễ thấy : \(\Delta AOB\) cân tại O => BAO^ = 45o
KL: a=1
BAO^ = 45o
Thực hiện phép tính: \(\sqrt{6+2\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(\sqrt{6-2\sqrt{5}}\)\(-\sqrt{29-12\sqrt{5}}\) =
= \(\sqrt{5}-1-\left(2\sqrt{5}-3\right)\)= 2-\(\sqrt{5}\)
Tính P = x2 + y2 và Q = x2009 + y2009
Biết rằng x>0, y>0, 1 + x + y = \(\sqrt{x}+\sqrt{xy}+\sqrt{y}\)
Áp dụng BĐT AM-GM ta có:
\(\left\{{}\begin{matrix}1+x\ge2\sqrt{x}\\x+y\ge2\sqrt{xy}\\1+y\ge2\sqrt{y}\end{matrix}\right.\)
Cộng theo vế 3 BĐT trên ta có:
\(2\left(1+x+y\right)\ge2\left(\sqrt{x}+\sqrt{y}+\sqrt{xy}\right)\)
\(\Leftrightarrow VT=1+x+y\ge\sqrt{x}+\sqrt{y}+\sqrt{xy}=VP\)
Xảy ra khi \(\left\{{}\begin{matrix}1+x=2\sqrt{x}\\x+y=2\sqrt{xy}\\1+y=2\sqrt{y}\end{matrix}\right.\)\(\Rightarrow x=y=1\)
Khi đó \(P=x^2+y^2=1^2+1^2=2\)
Và \(Q=x^{2009}+y^{2009}=1^{2009}+1^{2009}=2\)
Với \(x,y>0\) ta có
\(1+x+y=\sqrt{x}+\sqrt{xy}+\sqrt{y}\)
\(\Leftrightarrow2+2x+2y-2\sqrt{x}-2\sqrt{xy}-2\sqrt{y}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)+\left(x-2\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2=0\)
\(\forall x,y>0\) ta luôn có \(\left\{{}\begin{matrix}\left(\sqrt{x}-1\right)^2\ge0\\\left(\sqrt{y}-1\right)^2\ge0\\\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=1\)
Vậy x=y=1
Nên P=Q=2
Cho :
\(P=\dfrac{\sqrt{a}\cdot\left(16-\sqrt{a}\right)}{a-4}+\dfrac{3+2\cdot\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-3\cdot\sqrt{a}}{\sqrt{a}+2}\)
a) Rút gọn P
b) Tính giá trị của P tại \(a=4+2\cdot\sqrt{3}\)
c) Tìm min \(Q=P+\sqrt{a}\)
a: \(P=\dfrac{16\sqrt{a}-a-\left(2\sqrt{a}+3\right)\left(\sqrt{a}+2\right)+\left(3\sqrt{a}-2\right)\left(\sqrt{a}-2\right)}{a-4}\)
\(=\dfrac{16\sqrt{a}-a-2a-7\sqrt{a}-6+3a-8\sqrt{a}+4}{a-4}\)
\(=\dfrac{\sqrt{a}-2}{a-4}=\dfrac{1}{\sqrt{a}+2}\)
b: Thay \(a=4+2\sqrt{3}\) vào P, ta được:
\(P=\dfrac{1}{\sqrt{3}+1+2}=\dfrac{1}{3+\sqrt{3}}=\dfrac{3-\sqrt{3}}{6}\)