\(\sqrt{6-2\sqrt{5}}\)\(-\sqrt{29-12\sqrt{5}}\) =
= \(\sqrt{5}-1-\left(2\sqrt{5}-3\right)\)= 2-\(\sqrt{5}\)
\(\sqrt{6-2\sqrt{5}}\)\(-\sqrt{29-12\sqrt{5}}\) =
= \(\sqrt{5}-1-\left(2\sqrt{5}-3\right)\)= 2-\(\sqrt{5}\)
bài 5 sử dụng hằng đẳng thức bình phương một tổng ( hiệu) để khai phương
a)\(\sqrt{7+4\sqrt{3}}\)
b)\(\sqrt{8-2\sqrt{12}}\)
c)\(\sqrt{21+6\sqrt{6}}\)
d)\(\sqrt{15-6\sqrt{6}}\)
e)\(\sqrt{29-12\sqrt{5}}\)
g)\(\sqrt{41+12\sqrt{5}}\)
Thực hiện phép tính:
a) A = \(\dfrac{\left(\sqrt{5}-1\right)^3}{\sqrt{5}-2}\)
b) B = \(\sqrt{5}\left(\sqrt{6}+1\right):\dfrac{\sqrt{2\sqrt{3}+\sqrt{2}}}{\sqrt{2\sqrt{3}-\sqrt{2}}}\)
1. Cho kết quả phép tính \(\sqrt{9-4\sqrt{5}}\) là:
A. một kết quả khác
B. 2-\(\sqrt{5}\)
C. 3-2\(\sqrt{5}\)
D. \(\sqrt{5}\)-2
2. phương trình \(\sqrt{x-2}=2\) có nghiệm là
A. 4 ; -4
B. 6 ; -6
C. 6
D. 4
Rút gọn biểu thức:
a, \(\frac{-3}{4}\sqrt{9-4\sqrt{5}}\sqrt{\left(-8\right)^2\left(2+\sqrt{5}\right)^2}\)
b, \(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được.
a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)
d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\)
bài 2: tính giá trị các biểu thức sau:
a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b) \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}}\)
c) \(\sqrt{12}+\sqrt{48}-\sqrt{(\sqrt{75}-\sqrt{108)}^2}\)
bài 3: thực hiện phép tính.
a) \(\sqrt{(3-2\sqrt{2})^2}+\sqrt{(3+2\sqrt{2})^2}\) b)\(\sqrt{(5-2\sqrt{6})^2}-\sqrt{(5+2\sqrt{6})^2}\)
c) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\) d) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
bài 4: thực hiện các phép tính sau.
a) \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\) b) \(2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}\dfrac{2}{5}\sqrt{\dfrac{75}{16}}\)
c) \(\sqrt{8}+\sqrt{72}+\sqrt{98}-5\sqrt{128}\) d) \(2\sqrt{\dfrac{9}{8}}-\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{25}{18}}\)
bài 5: rút ngọn biểu thức với giả thiết các biểu thức chữ đều có nghĩa.
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}(x>0;y>0)\)
b) \(\dfrac{a+\sqrt{ab}}{b+\sqrt{ab}}(a;b\ge0)\)
bài 6: giải các phương trình sau:\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
1.\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
2.\(\sqrt{9-4\sqrt{5}}-\sqrt{9+\sqrt{80}}\)
3.\(\sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}\)
4.\(\sqrt{3+2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)
5.\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
6.\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
7.\(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
Rút gọn
a) \(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{2}-\sqrt{5}\)
b)\(\sqrt{41+6\sqrt{6}-12\sqrt{10}-4\sqrt{5}}+2\sqrt{5}-\sqrt{3}\)
a, \(6\sqrt{3}-2\sqrt{12}+5\sqrt{300}-7\sqrt{243}\)
b, \(\sqrt{28}+3\sqrt{63}-6\sqrt{175}-\dfrac{1}{5}\sqrt{252}\)
c,\(5\sqrt{44}-2\sqrt{275}-3\sqrt{176}\)
d, \(2\sqrt{75}-\sqrt{12}+2\sqrt{147}-7\sqrt{103}\)
Tính giá trị biểu thức:
\(a,\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}\)
\(b,\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)
\(c,\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{1}{\sqrt{5}-\sqrt{2}}\)
\(d,\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)