Cho tam giác ABC vuông ở A có AB=18cm;AC=24cmAB=18cm;AC=24cm. So sánh khoảng cách từ trọng tâm G đến các đỉnh của tam giác ABC? (Làm tròn đến chữ số thập phân thứ hai)
Cho tam giác ABC vuông ở A có AB=18cm;AC=24cmAB=18cm;AC=24cm. So sánh khoảng cách từ trọng tâm G đến các đỉnh của tam giác ABC? (Làm tròn đến chữ số thập phân thứ hai)
cho tam giác ABC cân tại A và 2 đường trung tuyến BM , CN cắt nhau tại K
a) Cm : goc BNC = goc CMB
b) tam giac BKC can tai K
c) BC nho hon 4 lan KM
a: Xét ΔNBC và ΔMCB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
DO đó: ΔNBC=ΔMCB
Suy ra: \(\widehat{BNC}=\widehat{CMB}\)
b: Xet ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)
nên ΔKBC cân tại K
theo kết quả của bài 64 chương II,phần hình Học, SBT Toán 7 tập một ta có:
Đoạn thẳng nối trung điểm hai cạnh của 1 tam giác
Chứng minh 3 đường trung tuyết cắt nhau tại một điểm?
Cho \(\Delta ABC\) có các trung tuyến \(AM;BN;CP\) cắt nhau tại trọng tâm G. Trên tia AM lấy D sao cho G là trung điểm của AD.
a/ C.m các cạnh của \(\Delta BGD=\dfrac{2}{3}\) các trung tuyến của \(\Delta ABC\)
b/ C.m các trung tuyến của \(\Delta BGD=\dfrac{1}{2}\) các cạnh của \(\Delta ABC\)
c/ Nêu cách dựng \(\Delta ABC\) khi biết độ dài 3 đường trung tuyến \(AM;BN;CP\)
a) Do G là trọng tâm của tam giác ABC nên :
\(\dfrac{BG}{BN}=\dfrac{2}{3};\dfrac{GM}{AG}=\dfrac{1}{2}\)Do G là trung điểm của AD NÊN\(\dfrac{GD}{AG}=1\)
\(\Rightarrow GM=MG\) . \(\Rightarrow\dfrac{GD}{AG}=\dfrac{2}{3}\)
Tự cm \(\Delta BMD=\Delta CMG\left(c-g-c\right)\)
=> \(GC=BD\) Mà \(\dfrac{GC}{QC}=\dfrac{2}{3}\) \(\Rightarrow\dfrac{BD}{QC}=\dfrac{2}{3}\)
Vậy \(\dfrac{BG}{BN}=\dfrac{2}{3};\dfrac{BD}{QC}=\dfrac{2}{3};\dfrac{GD}{AG}=\dfrac{2}{3}\)
b) ta có luôn \(BM=\dfrac{1}{2}BC\left(gt\right)\)
Tự chứng minh KG là đường trung bình của Tam giác ABD
=> \(KG=\dfrac{AB}{2}\)
HN = BG = DC ; HN // CD (tự chứng minh ) => \(HD=NC=\dfrac{1}{2}AC\)
Vậy .......
\(\text{a) Ta có: }AG=\dfrac{2}{3}AM\left(G\text{ là trực tâm của }\Delta ABC\right)\\ \text{Mà }AG=GD\left(G\text{ là trung điểm }AD\right)\\ \Rightarrow GD=\dfrac{2}{3}AM\left(1\right)\\ \text{Mà }GM=\dfrac{1}{3}AM\left(G\text{ là trực tâm của }\Delta ABC\right)\\ \Rightarrow MD=MG=GD-GM=\dfrac{2}{3}AM=\dfrac{1}{3}AM=\dfrac{1}{3}AM\\ \text{Xét }\Delta BMD\text{ và }\Delta GMC\text{ có: }\left\{{}\begin{matrix}AM=BM\left(\text{Chứng minh trên}\right)\\\widehat{BMD}=\widehat{GMC}\left(\text{ 2 góc đối đỉnh }\right)\\MD=MG\left(\text{Chứng minh trên}\right)\end{matrix}\right.\\ \Rightarrow\Delta BMD=\Delta GMC\left(c.g.c\right)\\ \Rightarrow BD=GC\left(\text{ 2 góc tương ứng }\right)\\ \text{Mà }GC=\dfrac{2}{3}CQ\left(G\text{ là trực tâm của }\Delta ABC\right)\\ \Rightarrow BD=\dfrac{2}{3}CQ\left(2\right)\\ \text{Lại có : }BG=\dfrac{2}{3}BN\left(G\text{ là trực tâm của }\Delta ABC\right)\left(3\right)\\ \text{Từ }\left(1\right);\left(2\right)\text{ và }\left(3\right)\Rightarrow\Delta BGD\text{ có các cạnh }GD;BD;BG=\dfrac{2}{3}\text{ các đường trung tuyến }AM;CQ;BN\text{ của }\Delta ABC\)
Cho \(\Delta ABC\), 2 đường trung tuyến \(AM;BN\) vuông góc với nhau tại G biết \(AB=a;BC=b;CA=c\). CMR \(a^2+b^2=5c^2\)
Hình tự vẽ.
Áp dụng định lý pytago vào các \(\Delta\) vuông tại G:
_ \(\Delta ABG\) : \(AB^2=BG^2+AG^2=a^2\)
\(\Leftrightarrow4GM^2+4GN^2=a^2\)
\(\Leftrightarrow20GN^2+20GM^2=5a^2\)
_ \(\Delta BGM\) : \(BM^2=GM^2+BG^2\)
\(\Leftrightarrow\dfrac{b^2}{4}=GN^2+4GM^2\)
\(\Leftrightarrow b^2=4GN^2+16GM^2\)
_ \(\Delta AGN\) : \(AN^2=AG^2+GN^2\)
\(\Leftrightarrow\dfrac{c^2}{4}=GM^2+4GN^2\)
\(\Leftrightarrow c^2=4GM^2+16GN^2\)
Khi đó: \(5a^2=b^2+c^2\left(=20GN^2+20GM^2\right)\).
P/s: Có sửa đề và t trình bày hơi tắt.
Đã học đến chương 3 đâu chị (mà chị học lớp 7 à)
Tick vài câu đi (để được thầy phynit nhắc tên) cho nổi tiếng chút xem nào.
?1 Tính giá trị của biểu thức 3x2-9x tại x = 1 và tại x=\(\dfrac{1}{3}\)
?2 Đọc số em chọn để được câu đúng :
giá trị của biểu thức x2 y tại x = -4 và y = 3 là
-48
144
-24
48
mk viết hơi khó hiểu thì các bn vào SGK trang 28 lớp 7 tập 2 nhé
?1:
\(3x^2-9x=3x\left(x-3\right)\)
Thay \(x=1\) vào biểu thức,ta có:
\(3.1\left(1-3\right)=-6\)
Thay \(x=\dfrac{1}{3}\) vào biểu thức,ta có:
\(3.\dfrac{1}{3}\left(\dfrac{1}{3}-3\right)=-\dfrac{8}{3}\)
?2
Thay \(x=-4\) và \(y=3\) vào biểu thức,ta có:
\(\left(-4\right)^2.3=48\)
cho tam giác ABC vuông tại A hai đường trung tuyến BD và CE . C/ m BD^2 + CE^2 = 5/4 BC^2
Áp dụng định lý pytago vào tam giác vuông ABD ta có : \(BD^2=AB^2+AD^2=AB^2+\left(\dfrac{1}{2}AC\right)^2=AB^2+\dfrac{1}{4}AC^2\)(1)
Áp dụng định lý pytago vào tam giác vuông AEC ta có : \(EC^2=AE^2+AC^2=\left(\dfrac{1}{2}AB\right)^2+AC^2=\dfrac{1}{4}AB^2+AC^2\)(2)
Từ (1);(2) \(\Rightarrow BD^2+EC^2=AB^2+\dfrac{1}{4}AC^2+\dfrac{1}{4}AB^2+AC^2=\dfrac{5}{4}AB^2+\dfrac{5}{4}AC^2\)(3)
Áp dụng định lý pytago vào tam giác vuông ABC ta có : \(BC^2=AB^2+AC^2\Rightarrow\dfrac{5}{4}BC^2=\dfrac{5}{4}AB^2+\dfrac{5}{4}AC^2\)(4)
Từ (3);(4) \(\Rightarrow BD^2+CE^2=\dfrac{5}{4}BC^2\) (đpcm)
cho tam giác ABC , AB<AC . BM và CN là 2 đường trung tuyến của tam giác.Chứng minh rằng : CN>BM
Cho tam giác ABC có 2 đường trung tuyến BM và CN cắt nhau tại G
a) Chứng minh BM+CN>\(\dfrac{3}{2}\)BC
b) Biết BM=CN.Chứng minh rằng AG⊥BC
a: Xét ΔABC có
BM là đường trung tuyến
CN là đường trung tuyến
BM cắt CN tại G
DO đó:G là trọng tâm
=>BG=2/3BM; CG=2/3CN
\(BM+CN=\dfrac{2}{3}BG+\dfrac{2}{3}CG>\dfrac{2}{3}BC\)
b: BM=CN nên GB=GC
mà AB=AC
nên AG là đường trung trực của BC
=>AG\(\perp\)BC