Cho \(\Delta ABC\) có các trung tuyến \(AM;BN;CP\) cắt nhau tại trọng tâm G. Trên tia AM lấy D sao cho G là trung điểm của AD.
a/ C.m các cạnh của \(\Delta BGD=\dfrac{2}{3}\) các trung tuyến của \(\Delta ABC\)
b/ C.m các trung tuyến của \(\Delta BGD=\dfrac{1}{2}\) các cạnh của \(\Delta ABC\)
c/ Nêu cách dựng \(\Delta ABC\) khi biết độ dài 3 đường trung tuyến \(AM;BN;CP\)
a) Do G là trọng tâm của tam giác ABC nên :
\(\dfrac{BG}{BN}=\dfrac{2}{3};\dfrac{GM}{AG}=\dfrac{1}{2}\)Do G là trung điểm của AD NÊN\(\dfrac{GD}{AG}=1\)
\(\Rightarrow GM=MG\) . \(\Rightarrow\dfrac{GD}{AG}=\dfrac{2}{3}\)
Tự cm \(\Delta BMD=\Delta CMG\left(c-g-c\right)\)
=> \(GC=BD\) Mà \(\dfrac{GC}{QC}=\dfrac{2}{3}\) \(\Rightarrow\dfrac{BD}{QC}=\dfrac{2}{3}\)
Vậy \(\dfrac{BG}{BN}=\dfrac{2}{3};\dfrac{BD}{QC}=\dfrac{2}{3};\dfrac{GD}{AG}=\dfrac{2}{3}\)
b) ta có luôn \(BM=\dfrac{1}{2}BC\left(gt\right)\)
Tự chứng minh KG là đường trung bình của Tam giác ABD
=> \(KG=\dfrac{AB}{2}\)
HN = BG = DC ; HN // CD (tự chứng minh ) => \(HD=NC=\dfrac{1}{2}AC\)
Vậy .......
\(\text{a) Ta có: }AG=\dfrac{2}{3}AM\left(G\text{ là trực tâm của }\Delta ABC\right)\\ \text{Mà }AG=GD\left(G\text{ là trung điểm }AD\right)\\ \Rightarrow GD=\dfrac{2}{3}AM\left(1\right)\\ \text{Mà }GM=\dfrac{1}{3}AM\left(G\text{ là trực tâm của }\Delta ABC\right)\\ \Rightarrow MD=MG=GD-GM=\dfrac{2}{3}AM=\dfrac{1}{3}AM=\dfrac{1}{3}AM\\ \text{Xét }\Delta BMD\text{ và }\Delta GMC\text{ có: }\left\{{}\begin{matrix}AM=BM\left(\text{Chứng minh trên}\right)\\\widehat{BMD}=\widehat{GMC}\left(\text{ 2 góc đối đỉnh }\right)\\MD=MG\left(\text{Chứng minh trên}\right)\end{matrix}\right.\\ \Rightarrow\Delta BMD=\Delta GMC\left(c.g.c\right)\\ \Rightarrow BD=GC\left(\text{ 2 góc tương ứng }\right)\\ \text{Mà }GC=\dfrac{2}{3}CQ\left(G\text{ là trực tâm của }\Delta ABC\right)\\ \Rightarrow BD=\dfrac{2}{3}CQ\left(2\right)\\ \text{Lại có : }BG=\dfrac{2}{3}BN\left(G\text{ là trực tâm của }\Delta ABC\right)\left(3\right)\\ \text{Từ }\left(1\right);\left(2\right)\text{ và }\left(3\right)\Rightarrow\Delta BGD\text{ có các cạnh }GD;BD;BG=\dfrac{2}{3}\text{ các đường trung tuyến }AM;CQ;BN\text{ của }\Delta ABC\)
b) Tôi chỉ có thể giải nó bằng kiến thức lớp 8, bà thông cảm.
c) Đầu tiên ta kẻ đoạn thẳng AM tùy ý. Trên AM lấy G sao cho \(AG=\dfrac{2}{3}AM\). Lần lượt kẻ các đoạn thẳng BN;CQ đi qua G sao cho \(\)\(BG=\dfrac{2}{3}BN;CG=\dfrac{2}{3}CQ\)