a: \(Y=\dfrac{3\left(x^2-x-1\right)-x^2+1}{\left(x+2\right)\left(x-1\right)}+\dfrac{x-2}{x}\cdot\dfrac{1-1+x}{1-x}\)
\(=\dfrac{2x^2-3x-2}{\left(x+2\right)\left(x-1\right)}+\dfrac{x-2}{x}\cdot\dfrac{-x}{x-1}\)
\(=\dfrac{2x^2-3x-2}{\left(x+2\right)\left(x-1\right)}-\dfrac{x-2}{x-1}\)
\(=\dfrac{2x^2-3x-2-x^2+4}{\left(x+2\right)\left(x-1\right)}=\dfrac{x^2-3x+2}{\left(x+2\right)\left(x-1\right)}=\dfrac{x-2}{x+2}\)
b: Y=2
=>2x+4=x-2
=>x=-6(nhận)
c; Y nguyên
=>x+2-4 chia hết cho x+2
=>x+2 thuộc {1;-1;2;-2;4;-4}
Kết hợp ĐKXĐ, ta được: x thuộc {-1;-3;-4;-6}