\(\left|y-2023\right|+2>=2\forall y\)
\(\left(x-20244\right)^2>=0\forall x\)
\(\Leftrightarrow\left(x-20244\right)^2+3>=3\forall x\)
=>\(\dfrac{6}{\left(x-20244\right)^2+3}< =\dfrac{6}{3}=2\forall x\)
Ta có: \(\left|y-2023\right|+2>=2\forall y\)
\(\dfrac{6}{\left(x-20244\right)^2+3}< =2\forall x\)
mà \(\left|y-2023\right|+2=\dfrac{6}{\left(x-20244\right)^2+3}\)
nên \(\left\{{}\begin{matrix}y-2023=0\\x-20244=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=20244\\y=2023\end{matrix}\right.\)