`x+y=2`
`<=>(x+y)^2=4`
`<=>x^2+2xy+y^2=4`
`<=>10+2xy=4`
`<=>2xy=-6`
`<=>xy=-3`
`A=x^3+y^3`
`A=(x+y)(x^2-xy+y^2)`
`A=2.(10-xy)`
`A=2(10+3)=2.13=26`
\(x+y=2\Rightarrow\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\Rightarrow10+2xy=4\)
\(\Rightarrow xy=-3\)
\(A=\left(x+y\right)\left(x^2+y^2\right)-xy\left(x+y\right)=2.10-\left(-3\right).2=26\)
\(A=x^3+y^3\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=2^3-3\cdot10\cdot2=8-60=-52\)