xét tính đồng biến nghịch biến
a) \(y=\sqrt{x^2-4x-3}\)
b) \(y=\sqrt{x^3-4x^2}\)
c) \(y=\left(2x+3\right)^{12}\left(6-5x\right)^9\left(x-7\right)^5\)
d) \(y=\sqrt{2x^3-3x^2}\)
Xét sự biến thiên của hàm số y = 1 - sinx trên một chu kì tuần hoàn của nó. Trong các kết luận sau, kết luận nào sai?
A. Hàm số đã cho nghịch biến trên khoảng ( - π 2 ; 0)
B. Hàm số đã cho nghịch biến trên khoảng (0; π 2 )
C. Hàm số đã cho đồng biến trên khoảng ( π 2 ; π)
D. Hàm số đã cho nghịch biến trên khoảng ( π 2 ; 3 π 2 )
Xét sự biến thiên của hàm số y = sinx - cosx. Tìm kết luận nào đúng?
A. Hàm số đã cho đồng biến trên khoảng ( - π 4 ; 3 π 4 )
B. Hàm số đã cho đồng biến trên khoảng ( 3 π 4 ; 7 π 4 )
C. Hàm số đã cho có tập giá trị là [-1; 1]
D. Hàm số đã cho luôn nghịch biến trên khoảng ( - π 4 ; 7 π 4 )
Xét sự biến thiên của hàm số y = sinx - cosx. Trong các kết luận sau, kết luận nào đúng?
A. Hàm số đã cho đồng biến trên khoảng ( - π 4 ; 3 π 4 )
B. Hàm số đã cho đồng biến trên khoảng ( 3 π 4 ; 7 π 4 )
C. Hàm số đã cho có tập giá trị là [-1; 1]
D. Hàm số đã cho luôn nghịch biến trên khoảng ( - π 4 ; 7 π 4 )
xét sự biến thiên của sin(pi/3-2x) voi x thuoc (-pi/2;pi/2)
xét tính đồng biến nghịch biến
a) \(y=\sqrt{3x^3-x^2-x}\)
b) \(y=\sqrt{x^2-x-1}\)
c) \(y=\sqrt{x^2-2x}\)
d) \(y=\sqrt{3x^2-2x+1}\)
xác định đường tiệm cận đứng của đồ thị hàm số sau
a) \(y=\dfrac{\sqrt{x-2}+1}{x^2-3x+2}\)
b) \(y=\dfrac{\sqrt{5+x}-1}{x^2+4x}\)
c) \(y=\dfrac{5x+1-\sqrt{x+1}}{x^2+2x}\)
d) \(y=\dfrac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}\)
tìm khoảng đồng biến và nghịch biến của hàm số sau
a) \(y'=\left(x-3\right)^3\left(x-1\right)^{22}\left(-3x-6\right)^7\)
b) \(y'=\left(4x-3\right)^3\left(x^2-1\right)^{21}\left(3x-9\right)^7\)
Sự biến thiên: Y=sinx Y=cosx Y=tanx Y=cotx