\(x^3+3x^2+3x=-\dfrac{7}{8}\\ x^3+3x^2+3x+1=1-\dfrac{7}{8}\\ \left(x+1\right)^3=\dfrac{1}{8}\\ x+1=\dfrac{1}{2}\\ x=-\dfrac{1}{2}\)
Ta có: \(x^3+3x^2+3x=\dfrac{-7}{8}\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)=\dfrac{1}{8}\)
\(\Leftrightarrow\left(x+1\right)^3=\left(\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+1=\dfrac{1}{2}\)
hay \(x=-\dfrac{1}{2}\)
Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)