`x/(2x+6) -x/(2x+2) = (3x+2)/[(x+1)(x+3)] (đk : x ne -1 ; x ne -3)`
`<=>`\(\dfrac{x\left(x+1\right)}{2\left(x+1\right)\left(x+3\right)}-\dfrac{x\left(x+3\right)}{2\left(x+1\right)\left(x+3\right)}=\dfrac{2\left(3x+2\right)}{2\left(x+1\right)\left(x+3\right)}\)
`=> x^2 +x -x^2 -3x = 6x +6`
`<=> x -3x-6x =6`
`<=> -8x =6`
`<=> x =-3/4(t//m)`
Vậy `S={-3/4}`
\(\Leftrightarrow x\left(x+1\right)-x\left(x+3\right)=6x+4\)
=>6x+4=x^2+x-x^2-3x=-2x
=>8x=-4
=>x=-1/2(nhận)