\(\dfrac{x+2\sqrt{x}}{\sqrt{x}-1}=8\left(x\ge0;x\ne1\right)\)
\(\Leftrightarrow x+2\sqrt{x}=8\left(\sqrt{x}-1\right)\)
\(\Leftrightarrow x+2\sqrt{x}=8\sqrt{x}-8\)
\(\Leftrightarrow x+2\sqrt{x}-8\sqrt{x}+8=0\)
\(\Leftrightarrow x-6\sqrt{x}+8=0\)
\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{x}-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=16\end{matrix}\right.\left(tm\right)\)
Vậy: ...
\(\dfrac{x+2\sqrt{x}}{\sqrt{x}-1}=8\left(x\ge0,x\ne1\right)\\ < =>x+2\sqrt{x}=8\sqrt{x}-8\\ < =>x-6\sqrt{x}+8=0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{x}-4=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=4\\x=16\end{matrix}\right.\left(TMDK\right)\)
\(=>S=\left\{4;16\right\}\)
Để giải phương trình x + 2√(x/(√x - 1)) = 8, ta làm như sau:
Bước 1: Đặt t = √x - 1, ta có x = t^2 + 1.
Bước 2: Thay x = t^2 + 1 vào phương trình ban đầu, ta có (t^2 + 1) + 2√((t^2 + 1)/t) = 8.
Bước 3: Tiếp tục giải phương trình này, ta có t^2 + 2√((t^2 + 1)/t) = 7.
Bước 4: Bình phương cả hai vế của phương trình, ta có (t^2 + 2√((t^2 + 1)/t))^2 = 7^2.
Bước 5: Giải phương trình này, ta được t^4 + 4t^2(t^2 + 1)/t + 4(t^2 + 1) = 49.
Bước 6: Rút gọn và sắp xếp các thành phần của phương trình, ta có t^4 + 4t^3 + 4t^2 + 4 - 49 = 0.
Bước 7: Tiếp tục rút gọn, ta có t^4 + 4t^3 + 4t^2 - 45 = 0.
Bước 8: Phân tích đa thức, ta thấy rằng t = 3 là một nghiệm của phương trình.
Bước 9: Chia đa thức cho (t - 3), ta được t^3 + 7t^2 + 25t + 15 = 0.
Bước 10: Sử dụng phương pháp giải đa thức, ta tìm được các nghiệm t = -5, -1, -3.
Bước 11: Thay t = √x - 1 vào các nghiệm tìm được, ta có các giá trị x tương ứng là 16, 0, 4.
Vậy, phương trình có ba nghiệm là x = 16, x = 0 và x = 4.