\(x+\dfrac{2}{3}=\dfrac{15}{6}\times\dfrac{9}{5}\)
\(x+\dfrac{2}{3}=\dfrac{5}{3}\times\dfrac{9}{5}\)
\(x+\dfrac{2}{3}=\dfrac{9}{3}\)
\(x=\dfrac{9}{3}-\dfrac{2}{3}\)
\(x=\dfrac{7}{3}\)
______________
\(\dfrac{15}{2}-x=\dfrac{7}{4}+\dfrac{5}{2}\)
\(\dfrac{15}{2}-x=\dfrac{7}{4}+\dfrac{10}{4}\)
\(\dfrac{15}{2}-x=\dfrac{17}{4}\)
\(x=\dfrac{15}{2}-\dfrac{17}{4}\)
\(x=\dfrac{30}{4}-\dfrac{17}{4}\)
\(x=\dfrac{13}{4}\)
\(x+\dfrac{2}{3}=\dfrac{15}{6}\times\dfrac{9}{5}\)
\(x+\dfrac{2}{3}=\) \(\dfrac{9}{2}\)
\(x=\dfrac{9}{2}-\dfrac{2}{3}\)
\(x=\dfrac{23}{6}\)
`x+2/3=15/6xx9/5`
`x+2/3=9/2`
`x=9/2-2/3`
`x=23/6`
`15/2-x=7/4+5/2`
`15/2-x=7/4+10/4`
`15/2-x=17/4`
`x=15/2-17/4`
`x=30/4-17/4`
`x=13/4`
\(x+\dfrac{2}{3}=\dfrac{15}{6}\times\dfrac{9}{5}\)
\(x+\dfrac{2}{3}=\dfrac{15\times9}{6\times5}=\dfrac{3\times3}{2\times1}=\dfrac{9}{2}\)
\(x+\dfrac{2}{3}=\dfrac{9}{2}\)
\(x=\dfrac{9}{2}-\dfrac{2}{3}=\dfrac{27}{6}-\dfrac{4}{6}=\dfrac{23}{6}\)
Vậy \(x=\dfrac{23}{6}\)
\(\dfrac{15}{2}-x=\dfrac{7}{4}+\dfrac{5}{2}\)
\(\dfrac{15}{2}-x=\dfrac{7}{4}+\dfrac{5}{2}=\dfrac{7}{4}+\dfrac{10}{4}=\dfrac{17}{4}\)
\(\dfrac{15}{2}-x=\dfrac{17}{4}\)
\(x=\dfrac{15}{2}-\dfrac{17}{4}=\dfrac{30}{4}-\dfrac{17}{4}=\dfrac{13}{4}\)
Vậy \(x=\dfrac{13}{4}\)
\(\dfrac{15}{2}-x=\dfrac{7}{4}+\dfrac{5}{2}\)
\(\dfrac{15}{2}-x=\dfrac{17}{2}\)
\(x=\dfrac{17}{2}-\dfrac{15}{2}\)
\(x=1\)