Sửa đề: \(x^2-2xy+y^2-2x+2y\)
=(x-y)^2-2(x-y)
=(x-y)(x-y-2)
\(Sửa:x^2-2xy+y^2-2x+2y\\ =\left(x-y\right)^2-2\left(x-y\right)\\ =\left(x-y\right)\left(x-y-2\right)\)
Sửa đề: \(x^2-2xy+y^2-2x+2y\)
=(x-y)^2-2(x-y)
=(x-y)(x-y-2)
\(Sửa:x^2-2xy+y^2-2x+2y\\ =\left(x-y\right)^2-2\left(x-y\right)\\ =\left(x-y\right)\left(x-y-2\right)\)
Giải hệ pt:
a)(x+√(x^2+4))(y+√(y^2+1))=2 và 27x^6=x^3-8y+2
b)(8x-3)√(2x-1) -y-4y^3=0 và 4x^2-8x+2y^3+y^2-2y+3=0
c) x(1+y-x)=-2y^2-y và x(√2y -2)=y(√(x-1)-2)
d) √(x+2y)+√(2x-y)+x^2y=√x+√3y+xy^2 và 2(1-y)√(x^2+2y-1)=y^2-2x-1
e)(y-2x+√y-√x)/√xy +1=0 và √(1-xy) +x^2-y^2=0
CÁC BẠN ƠI..GIÚP MK VS Ạ...MAI MK HOK R...CẢM ƠM TRƯỚC Ạ...☺️☺️☺️
Rút gọn
\(\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\left(\frac{x^4+4x^2y^2+y^4-4}{x^2+y+xy+x}\right):\frac{1}{2x^2+y+z}\)
tìm GTLN GLNN của:
P = x- 2Y biết x^2 + xy + y^2 =3
y= (x^2 +2x+2)/(x^2 + 3)
P= x^2 + xy +2y^2 biết x^2 + y^2 = 2
giải hệ phương trình giúp mình với :)
\(\hept{\begin{cases}x^2-2y^2=-1\\2x^3-y^3=2y-x\end{cases}}\)
\(\hept{\begin{cases}xy^2+2y-2=x^2+3x\\x+y=3\sqrt{y-1}\end{cases}}\)
\(\hept{\begin{cases}x^2-2y^2=xy+x+y\\x\sqrt{2y}-y\sqrt{x-1}=2x-y+1\end{cases}}\)
Tìm số nguyên x,y thỏa mãn 2 phương trình sau : 2y^2x + x + y + 1 = x^2 + 2y^2 + xy
\(\hept{\begin{cases}xy+y+x^2=2y^2-x-2\\xy+y+y^2=2x^2\end{cases}}\)
\(\left\{{}\begin{matrix}x^3+xy^2+x^2+3x=2y^3+2x^2y+6y\\2\sqrt{y-1}+6\sqrt{xy-5x+3}=x^2+12x-16\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3+xy^2+x^2+3x=2y^3+2x^2y+6y\\2\sqrt{y-1}+6\sqrt{xy-5x+3}=x^2+12x-16\end{matrix}\right.\)
tìm các số nguyên x;y thỏa mãn
2y^2x+x+y+1=x^2+2y^2+xy
tìm min 2x^2+y^2-xy+x-2y