\(\sqrt{\left(x^2-x+1\right)}=1\)
`=> x^2 - x +1 = 1`
`<=> x^2 - x + 1 - 1 =0`
`<=> x^2 - x = 0`
`<=> x^2 = x `
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
`\sqrt{x^2-x+1}=1`
`<=>x^2-x+1=1`
`<=>x^2-x=0`
`<=>x(x-1)=0`
`<=>[(x=0),(x-1=0):}`
`<=>[(x=0),(x=1):}`
Vậy `S={0;1}`
\(\sqrt{\left(x^2-x+1=1\right)}\)
`<=>` \(x^2-x+1=1\)
`<=>` \(x^2-x=1-1\)
`<=>` \(x^2-x=0\)
`<=>` \(x^2=x\)
`<=>` \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)