Theo công thức nghiệm của pt bậc 2:
=m+3
=m-2
giải pt |(m+3)^3-(m-2)^2|=50
|15m^2+15m+35|=50
|3m^2+3m+7|=10
m=
a: \(x^2+mx-6=0\)
=>a=1; b=m; c=-6
Vì \(a\cdot c=-6< 0\)
nên phương trình luôn có hai nghiệm trái dấu
b: \(\text{Δ}=b^2-4ac=m^2-4\cdot1\cdot\left(-6\right)=m^2+24>0\)
Do đó, phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-m-\sqrt{m^2+24}}{2}\\x_2=\dfrac{-m+\sqrt{m^2+24}}{2}\end{matrix}\right.\)
\(2\left|x_1\right|+3\left|x_2\right|=12\)
=>\(2\left|\dfrac{-m-\sqrt{m^2+24}}{2}\right|+3\left|\dfrac{-m+\sqrt{m^2+24}}{2}\right|=12\)
=>\(\left|m+\sqrt{m^2+24}\right|+1,5\left|\sqrt{m^2+24}-m\right|=12\)
=>\(\left|m+\sqrt{m^2+24}\right|+1,5\left|\dfrac{m^2+24-m^2}{\sqrt{m^2+24}+m}\right|=12\)
=>\(\left|m+\sqrt{m^2+24}\right|+\dfrac{36}{\left|m+\sqrt{m^2+24}\right|}-12=0\)(1)
Đặt \(m+\sqrt{m^2+24}=a\)
(1) sẽ trở thành \(\left|a\right|+\dfrac{36}{\left|a\right|}-12=0\)
=>\(\dfrac{a^2+36}{\left|a\right|}-12=0\)
=>\(a^2+36-12\left|a\right|=0\)
=>\(\left(\left|a\right|-6\right)^2=0\)
=>\(\left|a\right|-6=0\)
=>|a|=6
=>\(\left[{}\begin{matrix}a=6\\a=-6\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m+\sqrt{m^2+24}=6\left(2\right)\\m+\sqrt{m^2+24}=-6\left(3\right)\end{matrix}\right.\)
(2): \(m+\sqrt{m^2+24}=6\)
=>\(\sqrt{m^2+24}=6-m\)
=>\(\left\{{}\begin{matrix}6-m>=0\\m^2+24=m^2-12m+36\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< =6\\12m=12\end{matrix}\right.\)
=>m=1(nhận)
(3): \(m+\sqrt{m^2+24}=-6\)
=>\(\sqrt{m^2+24}=-m-6\)
=>\(\left\{{}\begin{matrix}-m-6>=0\\m^2+24=m^2+12m+36\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< =-6\\12m=-12\end{matrix}\right.\)
=>\(m\in\varnothing\)