Ta có: \(x^2-\left(x+2\right)\left(x-2\right)=2x\)
=>\(x^2-\left(x^2-4\right)=2x\)
=>\(2x=x^2-x^2+4=4\)
=>\(x=\dfrac{4}{2}=2\)
Ta có: \(x^2-\left(x+2\right)\left(x-2\right)=2x\)
=>\(x^2-\left(x^2-4\right)=2x\)
=>\(2x=x^2-x^2+4=4\)
=>\(x=\dfrac{4}{2}=2\)
BÀI 6 tìm x
1,\(2x\left(x-5\right)-\left(3x+2x^2\right)=0\) 2,\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
3,\(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\) 4,\(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
5,\(6x^2-\left(2x-3\right)\left(3x+2\right)=1\) 6,\(2x\left(1-x\right)+5=9-2x^2\)
\(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
Rút gọn các biểu thức sau :
A = \(2x^2\left(-3x^3+2x^2+x-1\right)+2x\left(x^2-3x+1\right)\)
B = \(2x:\dfrac{1}{2}x+x^2\)
C = \(\left[1:\left(1+x\right)+2x:\left(1-x^2\right)\right]:\left(\dfrac{1}{x}-1\right)\)
D = \(\dfrac{x^2-y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}+\dfrac{y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}\)
E = \(\dfrac{\left|x-3\right|}{x^2-9}.\left(x^2+6x+9\right)\)
F = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
1) \(\left(3-x^2\right)+6-2x=0\)
2) \(5\left(2x-1\right)+7=4\left(2-x\right)+2\)
3) \(x^2-6x+4\left(x-6\right)=0\)
4) \(\left(x+1\right)\left(2x-3\right)=x\left(x+1\right)\)
1 Giải phương trình
\(a.\left(x+3\right)\left(x-2\right)+2\left(x+1\right)^2=\left(x-3\right)^2-2x^2+4x\)
\(b.\left(x+1\right)^3-\left(x+2\right)\left(x-4\right)=\left(x-2\right)\left(x^2+2x+4\right)+2x^2\)
\(c.\frac{x^2+2x+1}{x2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)
Giải các phương trình sau:
f. 5 – (x – 6) = 4(3 – 2x)
g. 7 – (2x + 4) = – (x + 4)
h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
i. \(\left(x-2^3\right)+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
rút gọn các biểu thức sau
a, \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
b, \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
d) \(^{ }4x\left(2x+3\right)-8x\left(x+4\right)\)
e) \(^{ }2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\)
f) \(^{ }x\left(x+2\right)^2-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
Tìm x:
a, \(x-2=\left(x-2\right)^2\)
b,\(x+5=2\left(x+5\right)^2\)
c,\(\left(x^2+1\right)\left(2x-1\right)+2x=1\)
d,\(\left(x^2+3\right)\left(x+1\right)+x=1\)
Tính
\(\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
\(2x^2\left(x-2\right)+3x\left(x^2-x-2\right)-5\left(3-x^2\right)\)
\(\left(x-1\right)\left(x-3\right)-\left(4-x\right)\left(2x+1\right)-3x^2+2x-5\)