Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyên Hoàng

`x^2 -2ax+a^2 -a+1=0`

a. Tìm a để PT có nghiệm kép. Tìm nghiệp kép đó

b. Tìm a để PT có 2 nghiệm `x_1 ,x_2` thỏa mãn \(x_1^2+2ax_2=9\)

a: \(x^2-2ax+a^2-a+1=0\)

\(\text{Δ}=\left(-2a\right)^2-4\cdot1\cdot\left(a^2-a+1\right)\)

\(=4a^2-4a^2+4a-4\)

=4a-4

Để phương trình có nghiệm kép thì Δ=0

=>4a-4=0

=>4a=4

=>a=1

Thay a=1 vào phương trình, ta được:

\(x^2-2\cdot1\cdot x+1^2-1+1=0\)

=>\(x^2-2x+1=0\)

=>\(\left(x-1\right)^2=0\)

b: Để phương trình có hai nghiệm thì Δ>=0

=>4a-4>=0

=>4a>=4

=>a>=1

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-2a\right)}{1}=2a\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{a^2-a+1}{1}=a^2-a+1\end{matrix}\right.\)

\(x_1^2+2a\cdot x_2=9\)

=>\(x_1^2+x_2\left(x_1+x_2\right)=9\)

=>\(\left(x_1^2+x_2^2\right)+x_1\cdot x_2=9\)

=>\(\left(x_1+x_2\right)^2-x_1x_2=9\)

=>\(\left(2a\right)^2-\left(a^2-a+1\right)=9\)

=>\(4a^2-a^2+a-1-9=0\)

=>\(3a^2+a-10=0\)

=>\(3a^2+6a-5a-10=0\)

=>(a+2)(3a-5)=0

=>\(\left[{}\begin{matrix}a+2=0\\3a-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-2\left(lọai\right)\\a=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)

 


Các câu hỏi tương tự
Nguyễn Đại Nghĩa
Xem chi tiết
Trần Vũ Minh Huy
Xem chi tiết
Lizy
Xem chi tiết
Lizy
Xem chi tiết
ngan kim
Xem chi tiết
ngan kim
Xem chi tiết
Scarlett
Xem chi tiết
roronoa zoro
Xem chi tiết
Su Su
Xem chi tiết