Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Cho biểu thức:\(M=\left(\dfrac{3}{\sqrt{x}+3}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt{x}-5}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\) với: \(x>0;x\ne9\)
1/ Rút gọn biểu thức M |
2/ Tìm x sao cho M < 0 |
3/ Tìm số tự nhiên x để M nguyên âm |
4/ Cho x > 4. Tìm giá trị nhỏ nhất của M |
Cho biểu thức P=\(\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-9}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
với x>=0 ; x khác 9; x khác 4
Rút gọn biểu thức P
giúp mình với
Cho biểu thức A = \(\dfrac{\sqrt{x}-2}{\sqrt{x}}\) và B = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{2x}{x-9}\) Đk: x>0, x≠9
a, Rút gọn B
b, Đặt P = A.B. Tìm giá trị nguyên nhỏ nhất của x để |P| > P.
1) Cho biểu thức B=(\(\dfrac{1}{3-\sqrt{x}}\)-\(\dfrac{1}{3+\sqrt{x}}\)) . \(\dfrac{3+\sqrt{x}}{\sqrt{x}}\) ( với x>0; x≠9)
a) Rút gọn biểu thức B
b) Tìm các giá trị của x để B>0
rút gọn biểu thức :
B=\(\left(\dfrac{3\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{x-9}{\sqrt{x}-3}\)( với x≥0;x khác 4 và 9 )
rút gọn biểu thức : B= \(\left(\dfrac{x-7\sqrt{x}+12}{x-4\sqrt{x}+3}\right)\dfrac{\sqrt{x}+3}{\sqrt{x}-3}\)( x≥0,x khác 9)
cho A = \(\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)ĐK: x > 0, x khác 9
a, rút gọn A
b, Tìm x thuộc Z để A thuộc Z
c, Tìm x để A >1/3
cho A = \(\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)ĐK: x > 0, x khác 9
a, rút gọn A
b, Tìm x thuộc Z để A thuộc Z
c, Tìm x để A >1/3
cho biểu thức p=\(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\)với x>0;x khác 4,x khác 9 .rút gọn p
Rút gọn (Giải chi tiết từng bước với ạ)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\) (ĐK: x≥0;x≠9)