\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\frac{\left(1-x\right)^2}{2}\)
\(P=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\frac{\left(1-x\right)^2}{2}\)
\(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right)\frac{\left(x-1\right)^2}{2}\)
\(P=\left(\frac{\left(x-\sqrt{x}-2\right)-\left(x+\sqrt{x}-2\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right)\frac{\left(x-1\right)^2}{2}\)
\(P=\frac{2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}\frac{\left(x-1\right)^2}{2}\)
\(P=\frac{\sqrt{x}\left(x-1\right)}{\sqrt{x}+1}=\sqrt{x}\left(\sqrt{x}-1\right)=x-\sqrt{x}\)
1 + 1 + 2 x 2 x 4 x 2 x 8 + 2 + 16 =
Chứng minh rằng :
\(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)
với \(\hept{\begin{cases}x,y,z\ge0\\x,y,z\le3\end{cases}}\)
Trong toán học, n! (đọc là n giai thừa) được định nghĩa như sau:
n! = 1 x 2 x 3 x ... x (n-1) x n
Ví dụ: 1! = 1
2! = 1 x 2 = 2
3! = 1 x 2 x 3 = 6
Hãy cho biết 8 chữ số cuối cùng của số thập phân biểu diễn số 37!
2 x 2 + 5 =?
3 x 3 +1 =?
3 x 2 + 1 =?
a .(18 – 9 x 2) x (2 + 4 + 6 + 8 + 10)
b.(7 x 8 – 56 ) : (2 + 4 + 6 + 8 + 112)
c. (2 + 125 + 6 + 145 + 112) x (42 – 6 x 7)
d.(12 x 6 – 12 x 4 – 12 x 2) x ( 347 + 125)
e(a x 7 + a x 8 – a x 15) : (1 + 2 + 3 + ........ + 10)
f.58 – 58 x (6 + 54 – 60)
g.32 + 63 x a x ( a x 1 – a : 1) + 32 x 8 + 32
h.(1 + 2 + 3 + 4 + .... + 9) x (21 x 5 – 21 – 4 x21)
i.(9 x 7 + 8 x 9 – 15 x 9) : (1 + 3 + 5 + 7 + ........+ 17 + 19)
k.(2 + 4 + 6 + 8 + ... + 20) x (56 x 3 – 72 : 9 x 21)
tìm x
a) 39/7 : X =13
b) 2/3 . X + 1/2 = 1/10
c) X : 8/11 = 11/3
d) 2/9 - 7/8 . X = 1/3
1 x 1 + 3 x 3 + 5 x 5 + 7 x 7 + 9 x 9 = ?
2 x 2 + 4 x 4 + 6 x 6 + 8 x 8 = ?
1 x 1
2 x 2
3 x 3
20 x 1 + 20 x 2 + 20 x 3 + 20 x 4 + 20 x 5 + 20 x 6 = ?
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x ... x 100 = ?