Chứng minh bổ đề :Cho \(x+y+z=0\)
Chứng minh : \(x^3+y^3+z^3=3xyz\)
Bạn tham khảo tại đây
Áp dụng vào bài toán ta có :
\(a+2b-3c+b+2c-3a+c+2a-3b=0\)
Do đó : \(A=\left(a+2b-3c\right)\left(b+2c-3a\right)\left(c+2a-3b\right)\)
Chứng minh bổ đề :Cho \(x+y+z=0\)
Chứng minh : \(x^3+y^3+z^3=3xyz\)
Bạn tham khảo tại đây
Áp dụng vào bài toán ta có :
\(a+2b-3c+b+2c-3a+c+2a-3b=0\)
Do đó : \(A=\left(a+2b-3c\right)\left(b+2c-3a\right)\left(c+2a-3b\right)\)
Tính:
a, \(N=8a^3-27b^3\) biết ab=12 và 2a-3b=5
b, \(K=a^3+b^3+6a^2b^2\left(a+b\right)+3ab\left(a^2+b^2\right)\)biết a+b=1
c, \(P=\left(\dfrac{x}{4}\right)^3+\left(\dfrac{y}{2}\right)^3\)biết xy=4 và x+2y=8
Hãy viết biểu thức sau dưới dạng:
a)Tổng bình phương của hai biểu thức:
M=\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)
b)Tổng bình phương của ba biểu thức:
N=\(\left(a+b+c\right)^2+a^2+b^2+c^2\)
P=\(2\left(a-b\right)\left(c-b\right)+2\left(b-a\right)\left(c-a\right)+2\left(b-c\right)\left(a-c\right)\)
Dùng hằng đẳng thức để khai triển và thu gọn :
a,\(\left(-3xy^4+\dfrac{1}{2}x^2y^2\right)^3\)
b,\(\left(-\dfrac{1}{3}ab^2-2a^3b\right)^3\)
Rút gọn biểu thức:
a/ \(\left(x^2-2x+2\right)\left(x-2\right)\left(x^2-2x+2\right)\left(x+2\right)\)
b/ \(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)
c/ \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)
d/ \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+2\left(a+b\right)^2\)
- Cho thêm 1 VD về dạng: rút gọn biểu thức(y như trên) rồi trình bày chi tiết:
* Lưu ý: Không được trùng với 4 bài trên
Rút gọn các biểu thức sau :
a) \(\left(a+b\right)^2-\left(a-b\right)^2\)
b) \(\left(a+b\right)^3-\left(a-b\right)^3-2b^3\)
c) \(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
\(a,\left(a+b\right)^2-\left(a-b\right)^2\)
\(b,\left(a+b\right)^3-\left(a-b\right)^3-2b^3\)
rut gon bieu thuc :
a,\(\left(a+b\right)^3-\left(a-b\right)^3-6a^2b\)
b,\(\left(a+b\right)^3+\left(a-b\right)^3-6ab^2\)
BT1: Viết các biểu thức sau dưới dạng bình phương1 tổng(hiệu):
a, \(x^2+12x+36\)
b, \(x^2-x+\dfrac{1}{4}\)
BT2: Rút gọn biểu thức:
a, \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)
b, \(\left(x^4-3x^2+9\right)\left(x^2+3\right)-\left(3+x^2\right)^3\)
c, \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2\)
BT3: Tìm x:
a, \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
b, \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
c, \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2+1\right)=0\)
BT4: Tìm GTNN của:
\(A=x^2-4x+7\)
\(B=2x^2-6x\)
Giúp mình với mình cần gấp!!! Cảm ơn các bạn nhiều nha!!!
Rút gọn biểu thức
a)\(\left(a+b+c\right)^3-\left(b+c-a\right)^3-\left(a+c-b\right)^3-\left(a+b-c\right)^3\)
b)\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Giải CHI TIẾT nha